IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i2p387-399.html
   My bibliography  Save this article

The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US

Author

Listed:
  • Fthenakis, Vasilis
  • Mason, James E.
  • Zweibel, Ken

Abstract

So far, solar energy has been viewed as only a minor contributor in the energy mixture of the US due to cost and intermittency constraints. However, recent drastic cost reductions in the production of photovoltaics (PV) pave the way for enabling this technology to become cost competitive with fossil fuel energy generation. We show that with the right incentives, cost competitiveness with grid prices in the US (e.g., 6-10 US¢/kWh) can be attained by 2020. The intermittency problem is solved by integrating PV with compressed air energy storage (CAES) and by extending the thermal storage capability in concentrated solar power (CSP). We used hourly load data for the entire US and 45-year solar irradiation data from the southwest region of the US, to simulate the CAES storage requirements, under worst weather conditions. Based on expected improvements of established, commercially available PV, CSP, and CAES technologies, we show that solar energy has the technical, geographical, and economic potential to supply 69% of the total electricity needs and 35% of the total (electricity and fuel) energy needs of the US by 2050. When we extend our scenario to 2100, solar energy supplies over 90%, and together with other renewables, 100% of the total US energy demand with a corresponding 92% reduction in energy-related carbon dioxide emissions compared to the 2005 levels.

Suggested Citation

  • Fthenakis, Vasilis & Mason, James E. & Zweibel, Ken, 2009. "The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US," Energy Policy, Elsevier, vol. 37(2), pages 387-399, February.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:387-399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00407-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mason, James E., 2007. "World energy analysis: H2 now or later?," Energy Policy, Elsevier, vol. 35(2), pages 1315-1329, February.
    2. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    3. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    4. Greenblatt, Jeffery B. & Succar, Samir & Denkenberger, David C. & Williams, Robert H. & Socolow, Robert H., 2007. "Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation," Energy Policy, Elsevier, vol. 35(3), pages 1474-1492, March.
    5. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    6. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    7. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castagneto Gissey, Giorgio & Subkhankulova, Dina & Dodds, Paul E. & Barrett, Mark, 2019. "Value of energy storage aggregation to the electricity system," Energy Policy, Elsevier, vol. 128(C), pages 685-696.
    2. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    3. Li, Jun, 2010. "Decarbonising power generation in China--Is the answer blowing in the wind?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1154-1171, May.
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    6. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    7. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    8. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    9. Fagiani, Riccardo & Barquín, Julián & Hakvoort, Rudi, 2013. "Risk-based assessment of the cost-efficiency and the effectivity of renewable energy support schemes: Certificate markets versus feed-in tariffs," Energy Policy, Elsevier, vol. 55(C), pages 648-661.
    10. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    11. Walker, S.L., 2012. "Can the GB feed-in tariff deliver the expected 2% of electricity from renewable sources?," Renewable Energy, Elsevier, vol. 43(C), pages 383-388.
    12. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    13. Vagliasindi, Maria, 2012. "The role of policy driven incentives to attract PPPs in renewable-based energy in developing countries : a cross-country analysis," Policy Research Working Paper Series 6120, The World Bank.
    14. Ayompe, L.M. & Duffy, A., 2013. "Feed-in tariff design for domestic scale grid-connected PV systems using high resolution household electricity demand data," Energy Policy, Elsevier, vol. 61(C), pages 619-627.
    15. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    16. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    17. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    18. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    19. Zack Norwood & Joel Goop & Mikael Odenberger, 2017. "The Future of the European Electricity Grid Is Bright: Cost Minimizing Optimization Shows Solar with Storage as Dominant Technologies to Meet European Emissions Targets to 2050," Energies, MDPI, vol. 10(12), pages 1-31, December.
    20. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.

    More about this item

    Keywords

    Solar Global climate Photovoltaics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:387-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.