IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i2p120-127.html
   My bibliography  Save this article

Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

Author

Listed:
  • Cavallo, Alfred

Abstract

World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor.

Suggested Citation

  • Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:2:p:120-127
    DOI: 10.1016/j.energy.2006.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clark, Woodrow & Isherwood, William, 2004. "Distributed generation: remote power systems with advanced storage technologies," Energy Policy, Elsevier, vol. 32(14), pages 1573-1589, September.
    2. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    3. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    4. Denholm, Paul, 2006. "Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage," Renewable Energy, Elsevier, vol. 31(9), pages 1355-1370.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    3. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    4. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    5. Salgi, Georges & Lund, Henrik, 2008. "System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 85(4), pages 182-189, April.
    6. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    7. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    8. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
    9. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    10. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    11. Blarke, Morten B. & Dotzauer, Erik, 2011. "Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage," Energy, Elsevier, vol. 36(12), pages 6867-6878.
    12. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    13. Babonneau, Frédéric & Caramanis, Michael & Haurie, Alain, 2016. "A linear programming model for power distribution with demand response and variable renewable energy," Applied Energy, Elsevier, vol. 181(C), pages 83-95.
    14. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    15. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    16. Rusu, Eugen & Guedes Soares, C., 2012. "Wave energy pattern around the Madeira Islands," Energy, Elsevier, vol. 45(1), pages 771-785.
    17. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
    18. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    19. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).
    20. Clark II, Woodrow W. & Eisenberg, Larry, 2008. "Agile sustainable communities: On-site renewable energy generation," Utilities Policy, Elsevier, vol. 16(4), pages 262-274, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:2:p:120-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.