IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v16y2008i4p262-274.html
   My bibliography  Save this article

Agile sustainable communities: On-site renewable energy generation

Author

Listed:
  • Clark II, Woodrow W.
  • Eisenberg, Larry

Abstract

Smart and sustainable campuses demand three components. First, there is the need to have a Strategic Master Plan (SMP) for all infrastructures that include energy, transportation, water, waste and telecommunications along with the traditional dimensions of research, curricula, outreach and assessments. Secondarily, there is the array of issues pertaining to the sitting of buildings and overall facility master planning which must be addressed from the perspective of "green" energy, efficient orientation and be designed for multiple-use by the academic and local community. Thirdly, the development of sustainable buildings in one area that is compact and walkable campuses thus enable a range of transportation choices leads to reduced energy consumption. Historically, college campuses were often like towns and villages in that they are self-sustaining for family, business and recreational activities. Any sustainable smart campus is a vibrant, "experiential" applied educational model that should catalyze creative learning. More significantly, today, campuses and communities must be secure in terms of not only their own energy use and needs, but also for the resource demands of their power. Otherwise, the community(s) will never be secure economically or politically. Recognizing global warming and climate change, in the spring of 2001, the Board of Trustee (BOT) for the Los Angeles Community College District (LACCD) took the critical initial policy steps to turn these sustainable developments into goals. For example, the LACCD decided to have new "green" buildings to replace or renovate existing ones. The building program led to sustainable communities that included recycling, product reuse from waste as well as smart growth in terms of reduced energy use, efficiency and the use of telecommunication and wireless systems. The paper focuses primarily on the energy programs for the LACCD campuses. The paper considers the overall energy situation in California and the Southern California region, primarily Los Angeles. Then the paper looks at the state and regional energy contexts which lay the ground work and rationale why LACCD and other communities must act on their own to counteract climate change and global warming. Finally, the paper discusses how a community becomes sustainable, and hence "energy independent". By doing so, any community can generate its own energy through the production or acquisition of its energy from renewable sources such as solar, wind or biomass among other local resources. Even more significant consequences come in terms of carbon control, lower impact on the environment and reduced global warming.

Suggested Citation

  • Clark II, Woodrow W. & Eisenberg, Larry, 2008. "Agile sustainable communities: On-site renewable energy generation," Utilities Policy, Elsevier, vol. 16(4), pages 262-274, December.
  • Handle: RePEc:eee:juipol:v:16:y:2008:i:4:p:262-274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957-1787(08)00011-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    2. Travis Bradford, 2006. "Solar Revolution: The Economic Transformation of the Global Energy Industry," MIT Press Books, The MIT Press, edition 1, volume 1, number 026202604x, December.
    3. Hvelplund, Frede, 2006. "Renewable energy and the need for local energy markets," Energy, Elsevier, vol. 31(13), pages 2293-2302.
    4. Clark, Woodrow & Isherwood, William, 2004. "Distributed generation: remote power systems with advanced storage technologies," Energy Policy, Elsevier, vol. 32(14), pages 1573-1589, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manso, José Ramos Pires & Behmiri, Niaz Bashiri, 2013. "Renewable Energy and Sustainable Development/Energía renovable y Desarrollo Sostenible," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 31, pages 7-34, Enero.
    2. Pedro Ivo Silva-da-Nóbrega & Adriana Fumi Chim-Miki & Marysol Castillo-Palacio, 2022. "A Smart Campus Framework: Challenges and Opportunities for Education Based on the Sustainable Development Goals," Sustainability, MDPI, vol. 14(15), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    2. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    3. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
    4. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    5. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    6. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
    7. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    8. Clark II, Woodrow W. & Lund, Henrik, 2008. "Integrated technologies for sustainable stationary and mobile energy infrastructures," Utilities Policy, Elsevier, vol. 16(2), pages 130-140, June.
    9. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    10. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    11. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    12. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    13. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    14. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    15. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    16. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    17. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    18. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    19. Ryan Prescott & G. Cornelis van Kooten & Hui Zhu, 2007. "The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island," Energy & Environment, , vol. 18(6), pages 723-746, November.
    20. Brinkley, Catherine, 2018. "The conundrum of combustible clean energy: Sweden's history of siting district heating smokestacks in residential areas," Energy Policy, Elsevier, vol. 120(C), pages 526-532.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:16:y:2008:i:4:p:262-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.