IDEAS home Printed from https://ideas.repec.org/p/ags/uvicwp/37032.html
   My bibliography  Save this paper

The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island

Author

Listed:
  • Prescott, Ryan
  • van Kooten, G. Cornelis
  • Zhu, Hui

Abstract

In this paper, an in-depth analysis of power supply and demand on Vancouver Island is used to provide information about the optimal allocation of power across ‘generating’ sources and to investigate the economics of wind generation and penetrability into the Island grid. The methodology developed can be extended to a region much larger than Vancouver Island. Results from the model indicate that Vancouver Island could experience blackouts in the near future unless greater name-plate capacity is developed. While wind-generated energy has the ability to contribute to the Island’s power needs, the problem with wind power is its intermittency. The results indicate that wind power may not be able to prevent shortfalls, regardless of the overall name-plate capacity of the wind turbines. Further, costs of reducing CO2 emissions using wind power are unacceptably large, perhaps more than $100 per t CO2, although this might be attributable to the mix of power sources making up the Island’s grid.

Suggested Citation

  • Prescott, Ryan & van Kooten, G. Cornelis & Zhu, Hui, 2006. "The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island," Working Papers 37032, University of Victoria, Resource Economics and Policy.
  • Handle: RePEc:ags:uvicwp:37032
    DOI: 10.22004/ag.econ.37032
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/37032/files/WorkingPaper2006-04.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.37032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hirst, Eric & Hild, Jeffrey, 2004. "The Value of Wind Energy as a Function of Wind Capacity," The Electricity Journal, Elsevier, vol. 17(6), pages 11-20, July.
    2. Ferdinand E. Banks, 2003. "An introduction to the economics of natural gas," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 27(1), pages 25-63, March.
    3. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    4. Lawrence Pitt & G. Cornelis van Kooten & Murray Love & Ned Djilali, 2005. "Utility-scale Wind Power: Impacts of Increased Penetration," Working Papers 2005-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    5. Weisser, Daniel & Garcia, Raquel S., 2005. "Instantaneous wind energy penetration in isolated electricity grids: concepts and review," Renewable Energy, Elsevier, vol. 30(8), pages 1299-1308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    2. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    3. Hugh Scorah & Amy Sopinka & G. Cornelis van Kooten, 2010. "Managing Water Shortages in the Western Electricity Grids," Working Papers 2010-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    2. Jia Liu & G. Cornelis van Kooten & Lawrence Pitt, 2005. "Integrating Wind Power in Electricity Grids: An Economic Analysis," Working Papers 2005-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    3. van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.
    4. Salci, Sener & Jenkins, Glenn, 2016. "An Economic and Stakeholder Analysis for the Design of IPP Contracts for Wind Farms," MPRA Paper 70578, University Library of Munich, Germany.
    5. van Kooten, G. Cornelis, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 54370, University of Victoria, Resource Economics and Policy.
    6. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
    7. Salci, Sener & Jenkins, Glenn, 2016. "An Economic and Stakeholder Analysis for the Design of IPP Contracts for Wind Farms," MPRA Paper 70578, University Library of Munich, Germany.
    8. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    9. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    10. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    11. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    14. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    15. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    16. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    17. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    18. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    19. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    20. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.

    More about this item

    Keywords

    Environmental Economics and Policy; Resource /Energy Economics and Policy;

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uvicwp:37032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://web.uvic.ca/econ/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.