IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i5p524-531.html
   My bibliography  Save this article

Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050

Author

Listed:
  • Lund, H.
  • Mathiesen, B.V.

Abstract

This paper presents the methodology and results of the overall energy system analysis of a 100% renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed and designed a model for the future energy system of Denmark. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance the electricity supply and demand. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100% renewable energy from biomass and combinations of wind, wave and solar power; and year 2030 with 50% renewable energy, emphasising the first important steps on the way. The conclusion is that a 100% renewable energy supply based on domestic resources is physically possible, and that the first step towards 2030 is feasible to Danish society. However, Denmark will have to consider to which degree the country shall rely mostly on biomass resources, which will involve the reorganisation of the present use of farming areas, or mostly on wind power, which will involve a large share of hydrogen or similar energy carriers leading to certain inefficiencies in the system design.

Suggested Citation

  • Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:5:p:524-531
    DOI: 10.1016/j.energy.2008.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208000959
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xianguo, 2005. "Diversification and localization of energy systems for sustainable development and energy security," Energy Policy, Elsevier, vol. 33(17), pages 2237-2243, November.
    2. Lund, Henrik & Hvelplund, Frede & Ingermann, Karl & Kask, Ulo, 2000. "Estonian energy system Proposals for the implementation of a cogeneration strategy," Energy Policy, Elsevier, vol. 28(10), pages 729-736, August.
    3. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    4. Muneer, Tariq & Asif, Muhammad & Munawwar, Saima, 2005. "Sustainable production of solar electricity with particular reference to the Indian economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 444-473, October.
    5. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    6. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    7. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    8. Lund, H. & Hvelplund, F. & Nunthavorakarn, S., 2003. "Feasibility of a 1400 MW coal-fired power-plant in Thailand," Applied Energy, Elsevier, vol. 76(1-3), pages 55-64, September.
    9. Hennicke, P., 2004. "Scenarios for a robust policy mix: the final report of the German study commission on sustainable energy supply," Energy Policy, Elsevier, vol. 32(15), pages 1673-1678, October.
    10. Lund, Henrik & Münster, Ebbe, 2006. "Integrated transportation and energy sector CO2 emission control strategies," Transport Policy, Elsevier, vol. 13(5), pages 426-433, September.
    11. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    12. Lund, H. & Siupsinskas, G. & Martinaitis, V., 2005. "Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania," Applied Energy, Elsevier, vol. 82(3), pages 214-227, November.
    13. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    14. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    15. Lund, Henrik & Clark, Woodrow W., 2002. "Management of fluctuations in wind power and CHP comparing two possible Danish strategies," Energy, Elsevier, vol. 27(5), pages 471-483.
    16. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    17. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    18. Hvelplund, Frede & Lund, Henrik, 1998. "Rebuilding without restructuring the energy system in east Germany," Energy Policy, Elsevier, vol. 26(7), pages 535-546, June.
    19. Blarke, M.B. & Lund, H., 2008. "The effectiveness of storage and relocation options in renewable energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1499-1507.
    20. Lund, Henrik, 1999. "Implementation of energy-conservation policies: the case of electric heating conversion in Denmark," Applied Energy, Elsevier, vol. 64(1-4), pages 117-127, September.
    21. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    22. Duic, Neven & da Graça Carvalho, Maria, 2004. "Increasing renewable energy sources in island energy supply: case study Porto Santo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 383-399, August.
    23. Blok, Kornelis, 2005. "Enhanced policies for the improvement of electricity efficiencies," Energy Policy, Elsevier, vol. 33(13), pages 1635-1641, September.
    24. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:5:p:524-531. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.