IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-261826.html
   My bibliography  Save this paper

What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France

Author

Listed:
  • Adnane Kendel
  • Nathalie Lazaric
  • Kevin Maréchal

Abstract

The abundant literature on consumer feedback shows that it is an efficient instrument for reducing household energy consumption. However, the reported reductions are strongly dependent on contextual factors and on the type of feedback provided. Given the importance of learning to this respect, this dimension constitutes the core focus of the present study which reports the findings of the TICELEC (i.e. French acronym for information technologies for responsible electricity consumption) project in France. The experiment included a control group (G1: the self-monitoring group) and one equipped group (G2). All participants reduced their consumption and learnt either directly from feedback or indirectly through self-monitoring. The amount of energy savings, which is larger than in similar experiments, can be explained by two factors. First, the specificity of our sample (i.e. high income, high consumption) which allows for potentially large energy savings. Second, high involvement of participants and the building of trust. The quantitative and qualitative dimensions of learning are then discussed. Additionally, we focus on peak-load shifting in G2 with 2 subgroups (G21 and G22). The higher proportion of shifters in G22 and the higher ‘quality’ of their shifting suggest a higher level of learning enabled by the more sophisticated feedback. Although this translated into only a moderately higher rate of energy savings, the higher degree of absorbed knowledge (i.e. through ‘learning by looking through connecting’) might lead to a qualitatively distinctive type of energy saving.

Suggested Citation

  • Adnane Kendel & Nathalie Lazaric & Kevin Maréchal, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," ULB Institutional Repository 2013/261826, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/261826
    Note: SCOPUS: ar.j
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    2. Glenn W. Harrison & Morten I. Lau & E. Elisabet Rutström, 2007. "Estimating Risk Attitudes in Denmark: A Field Experiment," Scandinavian Journal of Economics, Wiley Blackwell, vol. 109(2), pages 341-368, June.
    3. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    4. Omar Al-Ubaydli & John List, 2012. "On the Generalizability of Experimental Results in Economics," Artefactual Field Experiments 00467, The Field Experiments Website.
    5. Glenn W. Harrison & John A. List, 2004. "Field Experiments," Journal of Economic Literature, American Economic Association, vol. 42(4), pages 1009-1055, December.
    6. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    7. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    8. repec:arz:wpaper:eres2011-156 is not listed on IDEAS
    9. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    10. Battalio, Raymond C, et al, 1979. "Residential Electricity Demand: An Experimental Study," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 180-189, May.
    11. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    12. Clastres, Cédric, 2011. "Smart grids: Another step towards competition, energy security and climate change objectives," Energy Policy, Elsevier, vol. 39(9), pages 5399-5408, September.
    13. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    14. W. Kip Viscusi & Joel Huber & Jason Bell, 2011. "Promoting Recycling: Private Values, Social Norms, and Economic Incentives," American Economic Review, American Economic Association, vol. 101(3), pages 65-70, May.
    15. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    16. Maréchal, Kevin, 2010. "Not irrational but habitual: The importance of "behavioural lock-in" in energy consumption," Ecological Economics, Elsevier, vol. 69(5), pages 1104-1114, March.
    17. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    18. Burgess, Jacquelin & Nye, Michael, 2008. "Re-materialising energy use through transparent monitoring systems," Energy Policy, Elsevier, vol. 36(12), pages 4454-4459, December.
    19. Gram-Hanssen, Kirsten, 2014. "Existing buildings – Users, renovations and energy policy," Renewable Energy, Elsevier, vol. 61(C), pages 136-140.
    20. Sweeney, Jillian C. & Kresling, Johannes & Webb, Dave & Soutar, Geoffrey N. & Mazzarol, Tim, 2013. "Energy saving behaviours: Development of a practice-based model," Energy Policy, Elsevier, vol. 61(C), pages 371-381.
    21. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 65-81, April.
    22. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    23. Sebastien Houde, Annika Todd, Anant Sudarshan, June A. Flora , and K. Carrie Armel, 2013. "Real-time Feedback and Electricity Consumption: A Field Experiment Assessing the Potential for Savings and Persistence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    24. Raymond Li, 2011. "Energy Futures Prices And The Us Dollar Exchange Rate," Australian Economic Papers, Wiley Blackwell, vol. 50(2-3), pages 62-73, September.
    25. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    26. Pasche, Markus, 2014. "Soft Paternalism and Nudging - Critique of the Behavioral Foundations," MPRA Paper 61140, University Library of Munich, Germany.
    27. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    28. Martinsson, Johan & Lundqvist, Lennart J. & Sundström, Aksel, 2011. "Energy saving in Swedish households. The (relative) importance of environmental attitudes," Energy Policy, Elsevier, vol. 39(9), pages 5182-5191, September.
    29. Vassileva, Iana & Campillo, Javier, 2014. "Increasing energy efficiency in low-income households through targeting awareness and behavioral change," Renewable Energy, Elsevier, vol. 67(C), pages 59-63.
    30. Verbong, Geert P.J. & Beemsterboer, Sjouke & Sengers, Frans, 2013. "Smart grids or smart users? Involving users in developing a low carbon electricity economy," Energy Policy, Elsevier, vol. 52(C), pages 117-125.
    31. Ma, Hengyun & Oxley, Les, 2011. "Are China's energy markets cointegrated?," China Economic Review, Elsevier, vol. 22(3), pages 398-407, September.
    32. Strengers, Yolande, 2012. "Peak electricity demand and social practice theories: Reframing the role of change agents in the energy sector," Energy Policy, Elsevier, vol. 44(C), pages 226-234.
    33. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    34. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    35. Vassileva, Iana & Dahlquist, Erik & Wallin, Fredrik & Campillo, Javier, 2013. "Energy consumption feedback devices’ impact evaluation on domestic energy use," Applied Energy, Elsevier, vol. 106(C), pages 314-320.
    36. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    37. Krishnamurti, Tamar & Davis, Alexander L. & Wong-Parodi, Gabrielle & Wang, Jack & Canfield, Casey, 2013. "Creating an in-home display: Experimental evidence and guidelines for design," Applied Energy, Elsevier, vol. 108(C), pages 448-458.
    38. McCalley, L. T. & Midden, Cees J. H., 2002. "Energy conservation through product-integrated feedback: The roles of goal-setting and social orientation," Journal of Economic Psychology, Elsevier, vol. 23(5), pages 589-603, October.
    39. Vassileva, Iana & Odlare, Monica & Wallin, Fredrik & Dahlquist, Erik, 2012. "The impact of consumers’ feedback preferences on domestic electricity consumption," Applied Energy, Elsevier, vol. 93(C), pages 575-582.
    40. Chancel, Lucas, 2014. "Are younger generations higher carbon emitters than their elders?," Ecological Economics, Elsevier, vol. 100(C), pages 195-207.
    41. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    42. Schleich, Joachim & Klobasa, Marian & Gölz, Sebastian & Brunner, Marc, 2013. "Effects of feedback on residential electricity demand—Findings from a field trial in Austria," Energy Policy, Elsevier, vol. 61(C), pages 1097-1106.
    43. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.
    44. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    45. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    46. Donald B. Rubin, 1977. "Assignment to Treatment Group on the Basis of a Covariate," Journal of Educational and Behavioral Statistics, , vol. 2(1), pages 1-26, March.
    47. Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
    48. Raina Gandhi, Christopher R. Knittel, Paula Pedro,and Catherine Wolfram, 2016. "Running Randomized Field Experiments for Energy Efficiency Programs: A Practitioners Guide," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    49. Buenstorf, Guido & Cordes, Christian, 2008. "Can sustainable consumption be learned? A model of cultural evolution," Ecological Economics, Elsevier, vol. 67(4), pages 646-657, November.
    50. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Antunes & Rangan Gupta & Zinnia Mukherjee & Peter Wanke, 2022. "Information entropy, continuous improvement, and US energy performance: a novel stochastic-entropic analysis for ideal solutions (SEA-IS)," Annals of Operations Research, Springer, vol. 313(1), pages 289-318, June.
    2. Gautier, Axel & Hoet, Brieuc & Jacqmin, Julien & Van Driessche, Sarah, 2019. "Self-consumption choice of residential PV owners under net-metering," Energy Policy, Elsevier, vol. 128(C), pages 648-653.
    3. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    4. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    5. Innocent, Morgane & Francois-Lecompte, Agnes & Roudaut, Nolwenn, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    6. Lazaric, Nathalie & Toumi, Mira, 2022. "Reducing consumption of electricity: A field experiment in Monaco with boosts and goal setting," Ecological Economics, Elsevier, vol. 191(C).
    7. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    8. Fouad, M.M. & Kanarachos, Stratis & Allam, Mahmoud, 2022. "Perceptions of consumers towards smart and sustainable energy market services: The role of early adopters," Renewable Energy, Elsevier, vol. 187(C), pages 14-33.
    9. Belaïd, Fateh & Ranjbar, Zeinab & Massié, Camille, 2021. "Exploring the cost-effectiveness of energy efficiency implementation measures in the residential sector," Energy Policy, Elsevier, vol. 150(C).
    10. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    11. Christophe Charlier, Gilles Guerassimoff, Ankinée Kirakozian, and Sandrine Selosse, 2021. "Under Pressure! Nudging Electricity Consumption within Firms. Feedback from a Field Experiment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 129-154.
    12. Innocent, Morgane & Francois-Lecompte, Agnès, 2018. "The values of electricity saving for consumers," Energy Policy, Elsevier, vol. 123(C), pages 136-146.
    13. Nathalie Lazaric & Mira Toumi, 2021. "Boosting Citizens Towards Reduced Energy Consumption: A Field Experiment in the Principality of Monaco," GREDEG Working Papers 2021-17, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    14. Paolo Zangheri & Tiago Serrenho & Paolo Bertoldi, 2019. "Energy Savings from Feedback Systems: A Meta-Studies’ Review," Energies, MDPI, vol. 12(19), pages 1-18, October.
    15. Belaïd, Fateh, 2022. "Mapping and understanding the drivers of fuel poverty in emerging economies: The case of Egypt and Jordan," Energy Policy, Elsevier, vol. 162(C).
    16. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    17. Bernadeta Gołębiowska & Anna Bartczak & Wiktor Budziński, 2019. "Impact of social comparison on DSM in Poland," Working Papers 2019-10, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    3. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    4. Šćepanović, Sanja & Warnier, Martijn & Nurminen, Jukka K., 2017. "The role of context in residential energy interventions: A meta review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1146-1168.
    5. Nilsson, Anders & Lazarevic, David & Brandt, Nils & Kordas, Olga, 2018. "Household responsiveness to residential demand response strategies: Results and policy implications from a Swedish field study," Energy Policy, Elsevier, vol. 122(C), pages 273-286.
    6. Lazaric, Nathalie & Toumi, Mira, 2022. "Reducing consumption of electricity: A field experiment in Monaco with boosts and goal setting," Ecological Economics, Elsevier, vol. 191(C).
    7. Tampakis, Stilianos & Arabatzis, Garyfallos & Tsantopoulos, Georgios & Rerras, Ioannis, 2017. "Citizens’ views on electricity use, savings and production from renewable energy sources: A case study from a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 39-49.
    8. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    9. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.
    10. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    11. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    12. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.
    13. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    14. Adnane Kendel & Nathalie Lazaric, 2015. "The diffusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities," Post-Print halshs-01246427, HAL.
    15. Büchs, Milena & Bahaj, AbuBakr S. & Blunden, Luke & Bourikas, Leonidas & Falkingham, Jane & James, Patrick & Kamanda, Mamusu & Wu, Yue, 2018. "Promoting low carbon behaviours through personalised information? Long-term evaluation of a carbon calculator interview," Energy Policy, Elsevier, vol. 120(C), pages 284-293.
    16. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    17. Nathalie Lazaric & Mira Toumi, 2021. "Boosting Citizens Towards Reduced Energy Consumption: A Field Experiment in the Principality of Monaco," GREDEG Working Papers 2021-17, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    18. Stamatios Ntanos & Grigorios L. Kyriakopoulos & Garyfallos Arabatzis & Vasilios Palios & Miltiadis Chalikias, 2018. "Environmental Behavior of Secondary Education Students: A Case Study at Central Greece," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    19. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    20. Fiorillo, Damiano & Sapio, Alessandro, 2019. "Energy saving in Italy in the late 1990s: Which role for non-monetary motivations?," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.

    More about this item

    Keywords

    Feedback; Household energy saving; Learning; Residential consumption;
    All these keywords.

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D13 - Microeconomics - - Household Behavior - - - Household Production and Intrahouse Allocation
    • D14 - Microeconomics - - Household Behavior - - - Household Saving; Personal Finance
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/261826. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.