IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02500507.html
   My bibliography  Save this paper

Prices, information and nudges for residential electricity conservation : A meta-analysis

Author

Listed:
  • Penelope Buckley

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Incentivising households to lower their electricity consumption is increasingly used as a tool to create a more flexible electricity demand. Previous reviews estimate that electricity savings of 6.4–7.4% can be achieved through monetary, informational and behavioural incentives. This papers argues that a more realistic estimate is of a 1.9–3.9% reduction in consumption based on the most recent experimental data, from both peer-reviewed and grey literature sources. Using data from 52 studies published during the "Smart Grid Era" (2005 onwards), the effects of incentives from 128 observations, amounting to 713,002 households, are analysed. The results show that individual and real-time feedback as well as personalised advice on how to save electricity are more effective than feedback on electricity costs and general electricity savings tips which lead to relative increases in consumption. Despite improvements in the quality of more recent studies, the analysis highlights the importance of methodological rigour in carrying out and reporting effects of incentives: an absence of a control group, of socio-demographic data, and the self-selection of participants into treatment leads to overestimation of effects.

Suggested Citation

  • Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
  • Handle: RePEc:hal:journl:hal-02500507
    DOI: 10.1016/j.ecolecon.2020.106635
    Note: View the original document on HAL open archive server: https://hal.science/hal-02500507
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02500507/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ecolecon.2020.106635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria Gleerup & Anders Larsen & Soren Leth-Petersen & Mikael Togeby, 2010. "The Effect of Feedback by Text Message (SMS) and Email on Household Electricity Consumption: Experimental Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 113-132.
    2. Adnane Kendel & Nathalie Lazaric, 2015. "The diffusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities," Post-Print halshs-01246427, HAL.
    3. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2014. "Feeding back about eco-feedback: How do consumers use and respond to energy monitors?," Energy Policy, Elsevier, vol. 73(C), pages 138-146.
    4. Fischbacher, Urs & Gachter, Simon & Fehr, Ernst, 2001. "Are people conditionally cooperative? Evidence from a public goods experiment," Economics Letters, Elsevier, vol. 71(3), pages 397-404, June.
    5. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    6. Dora L. Costa & Matthew E. Kahn, 2013. "Energy Conservation “Nudges” And Environmentalist Ideology: Evidence From A Randomized Residential Electricity Field Experiment," Journal of the European Economic Association, European Economic Association, vol. 11(3), pages 680-702, June.
    7. Stanley, T. D. & Jarrell, Stephen B. & Doucouliagos, Hristos, 2010. "Could It Be Better to Discard 90% of the Data? A Statistical Paradox," The American Statistician, American Statistical Association, vol. 64(1), pages 70-77.
    8. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    9. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    10. Naus, Joeri & Spaargaren, Gert & van Vliet, Bas J.M. & van der Horst, Hilje M., 2014. "Smart grids, information flows and emerging domestic energy practices," Energy Policy, Elsevier, vol. 68(C), pages 436-446.
    11. Richter, Laura-Lucia & Pollitt, Michael G., 2018. "Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market," Energy Economics, Elsevier, vol. 72(C), pages 436-450.
    12. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    13. Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
    14. Thoa Thi Kim Nguyen & Koji Shimada & Yuki Ochi & Takuya Matsumoto & Hiroshi Matsugi & Takao Awata, 2016. "An Experimental Study of the Impact of Dynamic Electricity Pricing on Consumer Behavior: An Analysis for a Remote Island in Japan," Energies, MDPI, vol. 9(12), pages 1-22, December.
    15. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    16. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    17. Bartusch, Cajsa & Wallin, Fredrik & Odlare, Monica & Vassileva, Iana & Wester, Lars, 2011. "Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception," Energy Policy, Elsevier, vol. 39(9), pages 5008-5025, September.
    18. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    19. Niamh Murtagh & Birgitta Gatersleben & David Uzzell, 2014. "20∶60∶20 - Differences in Energy Behaviour and Conservation between and within Households with Electricity Monitors," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    20. Mizobuchi, Kenichi & Takeuchi, Kenji, 2013. "The influences of financial and non-financial factors on energy-saving behaviour: A field experiment in Japan," Energy Policy, Elsevier, vol. 63(C), pages 775-787.
    21. Carroll, James & Lyons, Seán & Denny, Eleanor, 2014. "Reducing household electricity demand through smart metering: The role of improved information about energy saving," Energy Economics, Elsevier, vol. 45(C), pages 234-243.
    22. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    23. Ueno, Tsuyoshi & Sano, Fuminori & Saeki, Osamu & Tsuji, Kiichiro, 2006. "Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data," Applied Energy, Elsevier, vol. 83(2), pages 166-183, February.
    24. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    25. Andor, Mark A. & Fels, Katja M., 2018. "Behavioral Economics and Energy Conservation – A Systematic Review of Non-price Interventions and Their Causal Effects," Ecological Economics, Elsevier, vol. 148(C), pages 178-210.
    26. Benders, Rene M.J. & Kok, Rixt & Moll, Henri C. & Wiersma, Gerwin & Noorman, Klaas Jan, 2006. "New approaches for household energy conservation--In search of personal household energy budgets and energy reduction options," Energy Policy, Elsevier, vol. 34(18), pages 3612-3622, December.
    27. Alexander, Barbara R., 2010. "Dynamic Pricing? Not So Fast! A Residential Consumer Perspective," The Electricity Journal, Elsevier, vol. 23(6), pages 39-49, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    2. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. David Fredericks & Zhong Fan & Sandra Woolley & Ed de Quincey & Mike Streeton, 2020. "A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups," Energies, MDPI, vol. 13(10), pages 1-17, May.
    4. Du, Limin & Guo, Jin & Wei, Chu, 2017. "Impact of information feedback on residential electricity demand in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 324-334.
    5. Ruokamo, Enni & Meriläinen, Teemu & Karhinen, Santtu & Räihä, Jouni & Suur-Uski, Päivi & Timonen, Leila & Svento, Rauli, 2022. "The effect of information nudges on energy saving: Observations from a randomized field experiment in Finland," Energy Policy, Elsevier, vol. 161(C).
    6. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    7. Sloot, Daniel & Scheibehenne, Benjamin, 2022. "Understanding the financial incentive conundrum: A meta-analysis of the effectiveness of financial incentive interventions in promoting energy conservation behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    9. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    10. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    11. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).
    12. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    13. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    14. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    15. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    16. Ahir, Rajesh K. & Chakraborty, Basab, 2021. "A meta-analytic approach for determining the success factors for energy conservation," Energy, Elsevier, vol. 230(C).
    17. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    18. Fujimi, Toshio & Kajitani, Yoshio & Chang, Stephanie E., 2016. "Effective and persistent changes in household energy-saving behaviors: Evidence from post-tsunami Japan," Applied Energy, Elsevier, vol. 167(C), pages 93-106.
    19. Ian H. Rowlands & Tobi Reid & Paul Parker, 2015. "Research with disaggregated electricity end‐use data in households: review and recommendations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 383-396, September.
    20. Spandagos, Constantine & Baark, Erik & Ng, Tze Ling & Yarime, Masaru, 2021. "Social influence and economic intervention policies to save energy at home: Critical questions for the new decade and evidence from air-condition use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02500507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.