IDEAS home Printed from
   My bibliography  Save this article

Reducing household electricity demand through smart metering: The role of improved information about energy saving


  • Carroll, James
  • Lyons, Seán
  • Denny, Eleanor


The international roll out of residential smart meters has increased considerably in recent years. The improved consumption feedback provided, and in particular, the installation of in-house displays, has been shown to significantly reduce residential electricity demand in some international trials. This paper attempts to uncover the underlying drivers of such information-led reductions by exploring two research questions. First, does feedback improve a household's stock of information about potential energy reducing behaviours? And second, do improvements in such information help explain the demand reductions associated with the introduction of smart metering and time-of-use tariffs? Data is from a randomised controlled smart metering trial (Ireland) which also collected extensive information on household attitudes towards energy conservation and self-reported stocks of information related to energy saving. As with previous results in Ireland, we find that participation in a smart metering programme with time-of-use tariffs significantly reduces demand. Although treated households also increased their self-reported energy-reducing information, such improvements are not correlated with demand reductions in the short-run. Given this result, it is possible that feedback and other information provided in the context of smart metering are mainly effective in reducing and shifting demand because they act as a reminder and motivator.

Suggested Citation

  • Carroll, James & Lyons, Seán & Denny, Eleanor, 2014. "Reducing household electricity demand through smart metering: The role of improved information about energy saving," Energy Economics, Elsevier, vol. 45(C), pages 234-243.
  • Handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:234-243
    DOI: 10.1016/j.eneco.2014.07.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    2. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    3. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    4. Ahmad Faruqui & Sanem Sergici, 2011. "Dynamic pricing of electricity in the mid-Atlantic region: econometric results from the Baltimore gas and electric company experiment," Journal of Regulatory Economics, Springer, vol. 40(1), pages 82-109, August.
    5. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    6. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    7. Hledik, Ryan, 2009. "How Green Is the Smart Grid?," The Electricity Journal, Elsevier, vol. 22(3), pages 29-41, April.
    8. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    9. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Carroll & Seán Lyons & Eleanor Denny, 2013. "Reducing Electricity Demand through Smart Metering: The Role of Improved Household Knowledge," Trinity Economics Papers tep0313, Trinity College Dublin, Department of Economics.
    2. Møller, Niels Framroze & Andersen, Laura Mørch & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2019. "Can pecuniary and environmental incentives via SMS messaging make households adjust their electricity demand to a fluctuating production?," Energy Economics, Elsevier, vol. 80(C), pages 1050-1058.
    3. Ricci, Elena Claire & Banterle, Alessandro, 2020. "Do major climate change-related public events have an impact on consumer choices?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Chen, Victor L. & Delmas, Magali A. & Locke, Stephen L. & Singh, Amarjeet, 2017. "Information strategies for energy conservation: A field experiment in India," Energy Economics, Elsevier, vol. 68(C), pages 215-227.
    5. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    6. Laurie Buys & Desley Vine & Gerard Ledwich & John Bell & Kerrie Mengersen & Peter Morris & Jim Lewis, 2015. "A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    7. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    8. Considine, Timothy J. & Sapci, Onur, 2016. "The effectiveness of home energy audits: A case study of Jackson, Wyoming," Resource and Energy Economics, Elsevier, vol. 44(C), pages 52-70.
    9. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    10. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    11. Jihyo Kim & Suhyeon Nam, 2021. "Do Household Time, Risk, and Social Preferences Affect Home Energy Retrofit Decisions in Korea?," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    12. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    13. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    14. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    15. Sandro Casal & Nives DellaValle & Luigi Mittone & Ivan Soraperra, 2017. "Feedback and efficient behavior," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-21, April.
    16. Vásquez Lavin, Felipe & Barrientos, Manuel & Castillo, Álvaro & Herrera, Iván & Ponce Oliva, Roberto D., 2020. "Firewood certification programs: Key attributes and policy implications," Energy Policy, Elsevier, vol. 137(C).
    17. Baddeley, M., 2011. "Energy, the Environment and Behaviour Change: A survey of insights from behavioural economics," Cambridge Working Papers in Economics 1162, Faculty of Economics, University of Cambridge.
    18. Bruderer Enzler, Heidi, 2017. "Air travel for private purposes. An analysis of airport access, income and environmental concern in Switzerland," Journal of Transport Geography, Elsevier, vol. 61(C), pages 1-8.
    19. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    20. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).

    More about this item


    Residential electricity demand; Smart meters; Consumption feedback; Household knowledge; Conservation motivations;
    All these keywords.

    JEL classification:

    • D04 - Microeconomics - - General - - - Microeconomic Policy: Formulation; Implementation; Evaluation
    • D10 - Microeconomics - - Household Behavior - - - General
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:234-243. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.