IDEAS home Printed from
   My bibliography  Save this article

The potential of concentrating solar power in South Africa


  • Fluri, Thomas P.


In this paper all provinces of South Africa with a good potential for the implementation of large-scale concentrating solar power plants are identified using geographic information systems. The areas are assumed suitable if they get sufficient sunshine, are close enough to transmission lines, are flat enough, their respective vegetation is not under threat and they have a suitable land use profile. Various maps are created showing the solar resource, the slope, areas with "least threatened" vegetation, proximity to transmission lines and areas suitable for the installation of large concentrating solar power plants. Assuming the installation of parabolic trough plants, it is found that the identified suitable areas could accommodate plants with a nominal capacity of 510.3Â GW in the Northern Cape, 25.3Â GW in the Free State, 10.5Â GW in the Western Cape and 1.6Â GW in the Eastern Cape, which gives a total potential nominal capacity of 547.6Â GW for the whole country.

Suggested Citation

  • Fluri, Thomas P., 2009. "The potential of concentrating solar power in South Africa," Energy Policy, Elsevier, vol. 37(12), pages 5075-5080, December.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5075-5080

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dominguez Bravo, Javier & Garcia Casals, Xavier & Pinedo Pascua, Irene, 2007. "GIS approach to the definition of capacity and generation ceilings of renewable energy technologies," Energy Policy, Elsevier, vol. 35(10), pages 4879-4892, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:rensus:v:78:y:2017:i:c:p:648-667 is not listed on IDEAS
    2. Ramgolam, Yatindra K. & Soyjaudah, K.M.S., 2015. "Unveiling the solar resource potential for photovoltaic applications in Mauritius," Renewable Energy, Elsevier, vol. 77(C), pages 94-100.
    3. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    4. repec:eee:rensus:v:81:y:2018:i:p1:p:1154-1165 is not listed on IDEAS
    5. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    6. Clifton, Julian & Boruff, Bryan J., 2010. "Assessing the potential for concentrated solar power development in rural Australia," Energy Policy, Elsevier, vol. 38(9), pages 5272-5280, September.
    7. repec:gam:jeners:v:10:y:2017:i:7:p:1042-:d:105359 is not listed on IDEAS
    8. repec:eee:energy:v:137:y:2017:i:c:p:336-349 is not listed on IDEAS
    9. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    10. Hallegatte, Stephane & Fay, Marianne & Vogt-Schilb, Adrien, 2013. "Green industrial policies : when and how," Policy Research Working Paper Series 6677, The World Bank.
    11. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    12. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.
    13. Labordena, Mercè & Patt, Anthony & Bazilian, Morgan & Howells, Mark & Lilliestam, Johan, 2017. "Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 102(C), pages 52-72.
    14. Jadhav, Atul S. & Chembe, Dickson K. & Strauss, Johann M. & Van Niekerk, Johannes L., 2017. "Status of Solar Technology Implementation in the Southern African Developing Community (SADC) Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 622-631.
    15. Janjai, S. & Laksanaboonsong, J. & Seesaard, T., 2011. "Potential application of concentrating solar power systems for the generation of electricity in Thailand," Applied Energy, Elsevier, vol. 88(12), pages 4960-4967.
    16. Kadir, Mohd Zainal Abidin Ab & Rafeeu, Yaaseen, 2010. "A review on factors for maximizing solar fraction under wet climate environment in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2243-2248, October.
    17. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    18. Ummel, Kevin & Fant, Charles, 2014. "Identifying cost-effective deployment strategies through spatiotemporal modelling," WIDER Working Paper Series 121, World Institute for Development Economic Research (UNU-WIDER).
    19. Purohit, Ishan & Purohit, Pallav & Shekhar, Shashaank, 2013. "Evaluating the potential of concentrating solar power generation in Northwestern India," Energy Policy, Elsevier, vol. 62(C), pages 157-175.
    20. repec:eee:rensus:v:79:y:2017:i:c:p:1050-1077 is not listed on IDEAS
    21. Zawilska, E. & Brooks, M.J., 2011. "An assessment of the solar resource for Durban, South Africa," Renewable Energy, Elsevier, vol. 36(12), pages 3433-3438.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5075-5080. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.