IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8371-d700560.html
   My bibliography  Save this article

Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece

Author

Listed:
  • Dimitra G. Vagiona

    (Department of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

This study investigated the prioritization and ranking problem of the appropriate locations at which to deploy solar photovoltaic (PV) farms. Although different Multicriteria Decision Making (MCDM) methods can be found in the literature to address this problem, a comparative analysis of those methods is missing. The aim of this study is to compare four different MCDM approaches to evaluate and rank suitable areas for the deployment of solar PV farms, with the island of Rhodes (Greece) being used as an example. Feasible areas for the location of such facilities were identified with the use of Geographical Information Systems (GIS), by applying certain exclusion criteria found either in the national legislative framework or in the international literature. Data were obtained from Greek open geospatial data. The feasible sites were evaluated and ranked using four different MCDM methods: the Analytical Hierarchy Process (AHP), the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), the VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje), and the PROMETHEE II (Preference Ranking Organization METHod for Enrichment of Evaluations) method. The best alternative rated according to three TOPSIS, VIKOR and PROMETHEE is site (S2). The second-best alternative in the above three methods is site (S1), while the worst is site (S3). The best alternative rated according to AHP (S4) is in sixth position according to TOPSIS and in fifth position VIKOR and PROMETHEE. The comparison demonstrated that different MCDM techniques may generate different ranks. The simultaneous use of several MCDM methods in energy siting problems is considered advantageous as it can help decision makers to select the most sustainable sites, avoiding the disadvantages and availing the advantages of each method.

Suggested Citation

  • Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8371-:d:700560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    2. Doorga, Jay R.S. & Rughooputh, Soonil D.D.V. & Boojhawon, Ravindra, 2019. "Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius," Renewable Energy, Elsevier, vol. 133(C), pages 1201-1219.
    3. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    4. Jesús A. Prieto-Amparán & Alfredo Pinedo-Alvarez & Carlos R. Morales-Nieto & María C. Valles-Aragón & Alan Álvarez-Holguín & Federico Villarreal-Guerrero, 2021. "A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms," Land, MDPI, vol. 10(2), pages 1-19, February.
    5. Amjad, Fahd & Shah, Liaqat Ali, 2020. "Identification and assessment of sites for solar farms development using GIS and density based clustering technique- A case of Pakistan," Renewable Energy, Elsevier, vol. 155(C), pages 761-769.
    6. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    7. Anwarzai, Mohammad Abed & Nagasaka, Ken, 2017. "Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 150-160.
    8. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    9. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    10. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    11. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    12. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    13. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    14. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    15. Dominguez Bravo, Javier & Garcia Casals, Xavier & Pinedo Pascua, Irene, 2007. "GIS approach to the definition of capacity and generation ceilings of renewable energy technologies," Energy Policy, Elsevier, vol. 35(10), pages 4879-4892, October.
    16. Alessio Ishizaka & Markus Lusti, 2006. "How to derive priorities in AHP: a comparative study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(4), pages 387-400, December.
    17. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    18. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    19. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    20. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    21. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    22. Nikitidou, E. & Kazantzidis, A. & Tzoumanikas, P. & Salamalikis, V. & Bais, A.F., 2015. "Retrieval of surface solar irradiance, based on satellite-derived cloud information, in Greece," Energy, Elsevier, vol. 90(P1), pages 776-783.
    23. Mohammad Alhuyi Nazari & Alireza Aslani & Roghayeh Ghasempour, 2018. "Analysis of Solar Farm Site Selection Based on TOPSIS Approach," International Journal of Social Ecology and Sustainable Development (IJSESD), IGI Global, vol. 9(1), pages 12-25, January.
    24. Thomas L. Saaty, 2005. "The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 345-405, Springer.
    25. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    26. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    27. Andrii Shekhovtsov & Volodymyr Kozlov & Viktor Nosov & Wojciech Sałabun, 2020. "Efficiency of Methods for Determining the Relevance of Criteria in Sustainable Transport Problems: A Comparative Case Study," Sustainability, MDPI, vol. 12(19), pages 1-23, September.
    28. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    29. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    30. Paweł Ziemba, 2020. "Multi-Criteria Stochastic Selection of Electric Vehicles for the Sustainable Development of Local Government and State Administration Units in Poland," Energies, MDPI, vol. 13(23), pages 1-19, November.
    31. Sánchez-Lozano, Juan M. & Henggeler Antunes, Carlos & García-Cascales, M. Socorro & Dias, Luis C., 2014. "GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain," Renewable Energy, Elsevier, vol. 66(C), pages 478-494.
    32. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    33. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    34. Indre Siksnelyte-Butkiene & Edmundas Kazimieras Zavadskas & Dalia Streimikiene, 2020. "Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review," Energies, MDPI, vol. 13(5), pages 1-22, March.
    35. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    36. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qilin Wang & Evangelia Gontikaki & Peter Stenzel & Vasilis Louca & Frithjof C. Küpper & Martin Spiller, 2024. "How to Decarbonize Greece by Comparing Wind and PV Energy: A Land Eligibility Analysis," Energies, MDPI, vol. 17(3), pages 1-26, January.
    2. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2023. "A novel four-stage integrated GIS based fuzzy SWARA approach for solar site suitability with hydrogen storage system," Energy, Elsevier, vol. 278(PA).
    3. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    4. José Eduardo Tafula & Constantino Dário Justo & Pedro Moura & Jérôme Mendes & Ana Soares, 2023. "Multicriteria Decision-Making Approach for Optimum Site Selection for Off-Grid Solar Photovoltaic Microgrids in Mozambique," Energies, MDPI, vol. 16(6), pages 1-41, March.
    5. Tariq Muneer & Mehreen Saleem Gul & Marzia Alam, 2022. "Modelling of a Large Solar PV Facility: England’s Mallard Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-17, November.
    6. Chalaye, Pierrick & Sturmberg, Bjorn & Ransan-Cooper, Hedda & Lucas-Healey, Kathryn & Russell, A. Wendy & Hendriks, Johannes & Hansen, Paula & O'Neill, Matthew & Crowfoot, Warwick & Shorten, Phil, 2023. "Does site selection need to be democratized? A case study of grid-tied microgrids in Australia," Energy Policy, Elsevier, vol. 183(C).
    7. Hendrik & Yin Yuan & Akhmad Fauzi & Widiatmaka & Dyah Tjahyandari Suryaningtyas & Florentinus Firdiyono & Yang Yao, 2022. "Determination of the Red Mud Industrial Cluster Sites in Indonesia Based on Sustainability Aspect and Waste Management Analysis through PROMETHEE," Energies, MDPI, vol. 15(15), pages 1-13, July.
    8. Spyridoula Kakia & Georgia Pozoukidou & Dimitra G. Vagiona, 2023. "Providing an Integrated Vulnerability Assessment Indicator System (VAIS) to Measure the Spatial Vulnerability of Areas near Seveso Establishments in Thessaloniki (Greece)," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    9. Małgorzata Łatuszyńska & Kesra Nermend, 2022. "Energy Decision Making: Problems, Methods, and Tools—An Overview," Energies, MDPI, vol. 15(15), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    2. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    3. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    4. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    5. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    6. Wang, Yongli & Tao, Siyi & Chen, Xin & Huang, Feifei & Xu, Xiaomin & Liu, Xiaoli & Liu, Yang & Liu, Lin, 2022. "Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system," Renewable Energy, Elsevier, vol. 194(C), pages 273-292.
    7. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    8. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.
    9. Katkar, Venktesh V. & Sward, Jeffrey A. & Worsley, Alex & Zhang, K. Max, 2021. "Strategic land use analysis for solar energy development in New York State," Renewable Energy, Elsevier, vol. 173(C), pages 861-875.
    10. Rios, R. & Duarte, S., 2021. "Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Raza, Muhammad Ali & Yousif, Muhammad & Hassan, Muhammad & Numan, Muhammad & Abbas Kazmi, Syed Ali, 2023. "Site suitability for solar and wind energy in developing countries using combination of GIS- AHP; a case study of Pakistan," Renewable Energy, Elsevier, vol. 206(C), pages 180-191.
    12. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    13. Sofia Spyridonidou & Eva Loukogeorgaki & Dimitra G. Vagiona & Teresa Bertrand, 2022. "Towards a Sustainable Spatial Planning Approach for PV Site Selection in Portugal," Energies, MDPI, vol. 15(22), pages 1-22, November.
    14. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    15. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    16. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    17. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).
    18. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    19. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    20. Lindberg, O. & Birging, A. & Widén, J. & Lingfors, D., 2021. "PV park site selection for utility-scale solar guides combining GIS and power flow analysis: A case study on a Swedish municipality," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8371-:d:700560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.