IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8609-d975247.html
   My bibliography  Save this article

Modelling of a Large Solar PV Facility: England’s Mallard Solar Farm Case Study

Author

Listed:
  • Tariq Muneer

    (School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK)

  • Mehreen Saleem Gul

    (School of Energy, Geoscience, Infrastructure and Society, Heriot Watt University, Edinburgh EH14 4AS, UK)

  • Marzia Alam

    (School of Energy, Geoscience, Infrastructure and Society, Heriot Watt University, Edinburgh EH14 4AS, UK)

Abstract

With reference to energy generation, the global society has to urgently address three factors that are now critical: sustainability in terms of climate change, security in terms of the war that is currently raging in Europe with consequences that are being felt around the globe and the steep incline of fossil-fuel based energy costs. Around the world, large-scale solar farms are being constructed with tracking systems to improve the efficiency of photovoltaic (PV) modules. This article presents a comparison of energy generation of fixed-slope versus tracking PV modules. The analysis was based on a twenty-year dataset for two locations, namely, Lincoln (England) and Bhavnagar (India), which differ in terms of latitude, sky clarity and ambient temperature. It was demonstrated that a fixed-slope system facing the equator provides a healthy energy receipt that is a high fraction of the energy receipt of a tracking system. Furthermore, analysis was also carried out for a PV facility that will host the largest solar farm in England to conclude that regardless of the solar farm installation location, the use of bifacial PV is beneficial.

Suggested Citation

  • Tariq Muneer & Mehreen Saleem Gul & Marzia Alam, 2022. "Modelling of a Large Solar PV Facility: England’s Mallard Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8609-:d:975247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ram Machlev & Zohar Batushansky & Sachin Soni & Vladimir Chadliev & Juri Belikov & Yoash Levron, 2020. "Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    3. Mehreen Gul & Yash Kotak & Tariq Muneer & Stoyanka Ivanova, 2018. "Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies," Energies, MDPI, vol. 11(11), pages 1-17, October.
    4. Maria Krechowicz & Adam Krechowicz & Lech Lichołai & Artur Pawelec & Jerzy Zbigniew Piotrowski & Anna Stępień, 2022. "Reduction of the Risk of Inaccurate Prediction of Electricity Generation from PV Farms Using Machine Learning," Energies, MDPI, vol. 15(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savas Alkan & Yavuz Ates, 2023. "Pilot Scheme Conceptual Analysis of Rooftop East–West-Oriented Solar Energy System with Optimizer," Energies, MDPI, vol. 16(5), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    2. Małgorzata Łatuszyńska & Kesra Nermend, 2022. "Energy Decision Making: Problems, Methods, and Tools—An Overview," Energies, MDPI, vol. 15(15), pages 1-5, July.
    3. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    4. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    5. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    6. Hendrik & Yin Yuan & Akhmad Fauzi & Widiatmaka & Dyah Tjahyandari Suryaningtyas & Florentinus Firdiyono & Yang Yao, 2022. "Determination of the Red Mud Industrial Cluster Sites in Indonesia Based on Sustainability Aspect and Waste Management Analysis through PROMETHEE," Energies, MDPI, vol. 15(15), pages 1-13, July.
    7. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2023. "A novel four-stage integrated GIS based fuzzy SWARA approach for solar site suitability with hydrogen storage system," Energy, Elsevier, vol. 278(PA).
    8. José Eduardo Tafula & Constantino Dário Justo & Pedro Moura & Jérôme Mendes & Ana Soares, 2023. "Multicriteria Decision-Making Approach for Optimum Site Selection for Off-Grid Solar Photovoltaic Microgrids in Mozambique," Energies, MDPI, vol. 16(6), pages 1-41, March.
    9. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    10. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    11. Schuster, Christian Stefano, 2020. "The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation," Renewable Energy, Elsevier, vol. 152(C), pages 1186-1191.
    12. Hemant Bherwani & Saima Anjum & Ankit Gupta & Anju Singh & Rakesh Kumar, 2021. "Establishing influence of morphological aspects on microclimatic conditions through GIS-assisted mathematical modeling and field observations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15857-15880, November.
    13. Spyridoula Kakia & Georgia Pozoukidou & Dimitra G. Vagiona, 2023. "Providing an Integrated Vulnerability Assessment Indicator System (VAIS) to Measure the Spatial Vulnerability of Areas near Seveso Establishments in Thessaloniki (Greece)," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    14. Olga Poliak & Doron Shmilovitz, 2023. "Power Reserve from Photovoltaics for Improving Frequency Response in the Isolated System," Energies, MDPI, vol. 16(8), pages 1-20, April.
    15. Chalaye, Pierrick & Sturmberg, Bjorn & Ransan-Cooper, Hedda & Lucas-Healey, Kathryn & Russell, A. Wendy & Hendriks, Johannes & Hansen, Paula & O'Neill, Matthew & Crowfoot, Warwick & Shorten, Phil, 2023. "Does site selection need to be democratized? A case study of grid-tied microgrids in Australia," Energy Policy, Elsevier, vol. 183(C).
    16. Qilin Wang & Evangelia Gontikaki & Peter Stenzel & Vasilis Louca & Frithjof C. Küpper & Martin Spiller, 2024. "How to Decarbonize Greece by Comparing Wind and PV Energy: A Land Eligibility Analysis," Energies, MDPI, vol. 17(3), pages 1-26, January.
    17. Paulescu, Eugenia & Paulescu, Marius, 2021. "A new clear sky solar irradiance model," Renewable Energy, Elsevier, vol. 179(C), pages 2094-2103.
    18. Nien-Che Yang & Chun-Wei Hsu & Abhilash Sen, 2023. "Parameter Tuning for WECC Generic Photovoltaic System Models Using Latin Hypercube Sampling and Pareto Optimality," Mathematics, MDPI, vol. 11(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8609-:d:975247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.