IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285410.html
   My bibliography  Save this article

Short-term solar energy forecasting: Integrated computational intelligence of LSTMs and GRU

Author

Listed:
  • Aneela Zameer
  • Fatima Jaffar
  • Farah Shahid
  • Muhammad Muneeb
  • Rizwan Khan
  • Rubina Nasir

Abstract

Problems with erroneous forecasts of electricity production from solar farms create serious operational, technological, and financial challenges to both Solar farm owners and electricity companies. Accurate prediction results are necessary for efficient spinning reserve planning as well as regulating inertia and power supply during contingency events. In this work, the impact of several climatic conditions on solar electricity generation in Amherst. Furthermore, three machine learning models using Lasso Regression, ridge Regression, ElasticNet regression, and Support Vector Regression, as well as deep learning models for time series analysis include long short-term memory, bidirectional LSTM, and gated recurrent unit along with their variants for estimating solar energy generation for every five-minute interval on Amherst weather power station. These models were evaluated using mean absolute error root means square error, mean square error, and mean absolute percentage error. It was observed that horizontal solar irradiance and water saturation deficiency had a highly proportional relationship with Solar PV electricity generation. All proposed machine learning models turned out to perform well in predicting electricity generation from the analyzed solar farm. Bi-LSTM has performed the best among all models with 0.0135, 0.0315, 0.0012, and 0.1205 values of MAE, RMSE, MSE, and MAPE, respectively. Comparison with the existing methods endorses the use of our proposed RNN variants for higher efficiency, accuracy, and robustness. Multistep-ahead solar energy prediction is also carried out by exploiting hybrids of LSTM, Bi-LSTM, and GRU.

Suggested Citation

  • Aneela Zameer & Fatima Jaffar & Farah Shahid & Muhammad Muneeb & Rizwan Khan & Rubina Nasir, 2023. "Short-term solar energy forecasting: Integrated computational intelligence of LSTMs and GRU," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-25, October.
  • Handle: RePEc:plo:pone00:0285410
    DOI: 10.1371/journal.pone.0285410
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285410
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285410&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Shahid, Farah & Zameer, Aneela & Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2020. "A novel wavenets long short term memory paradigm for wind power prediction," Applied Energy, Elsevier, vol. 269(C).
    3. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    4. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    5. Maria Krechowicz & Adam Krechowicz & Lech Lichołai & Artur Pawelec & Jerzy Zbigniew Piotrowski & Anna Stępień, 2022. "Reduction of the Risk of Inaccurate Prediction of Electricity Generation from PV Farms Using Machine Learning," Energies, MDPI, vol. 15(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    2. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    3. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    4. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    5. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    7. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    8. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    9. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    10. Paik, Chunhyun & Chung, Yongjoo & Kim, Young Jin, 2021. "ELCC-based capacity credit estimation accounting for uncertainties in capacity factors and its application to solar power in Korea," Renewable Energy, Elsevier, vol. 164(C), pages 833-841.
    11. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    12. Gökgöz, Fazıl & Yücel, Öykü, 2025. "Measuring the long-term impact of wind, run-of-river, solar renewable energy alternatives on market clearing prices," Renewable Energy, Elsevier, vol. 241(C).
    13. Serhan Cevik & Keitaro Ninomiya, 2023. "Chasing the sun and catching the wind: Energy transition and electricity prices in Europe," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(4), pages 912-935, December.
    14. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    15. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    16. Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
    17. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    18. Diego Lopez-Bernal & David Balderas & Pedro Ponce & Arturo Molina, 2021. "Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems," Future Internet, MDPI, vol. 13(8), pages 1-14, July.
    19. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    20. Valentina Sessa & Edi Assoumou & Mireille Bossy & Sofia G. Simões, 2021. "Analyzing the Applicability of Random Forest-Based Models for the Forecast of Run-of-River Hydropower Generation," Clean Technol., MDPI, vol. 3(4), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.