IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp536-546.html
   My bibliography  Save this article

Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors

Author

Listed:
  • al Irsyad, Muhammad Indra
  • Halog, Anthony
  • Nepal, Rabindra

Abstract

Failures of countries to set and achieve renewable energy targets are prevalent, producing uncertainty as to the possibility of renewable energy contributing to a reduction in global emissions. Lack of policy and incorrect modelling analyses are among the sources of these failures and understanding these two sources is crucial for improving confidence in renewables. We assess errors in projections pertaining to the capacity and production of renewable energy in the United States and those countries of the European Union that have strong commitments to green energy supply. Our results show that solar energy has the lowest level of uncertainty as it has the most achievable capacity projections. However, other renewables entail more attractive policies and further research is needed for the advancement of reliable technology and accurate weather predictions. Our findings also provide ranges for the projection uncertainties for six renewable energy technologies, drawing attentions to ways that the dominant errors in these renewable energy projections may be rectified.

Suggested Citation

  • al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:536-546
    DOI: 10.1016/j.renene.2018.06.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307341
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:bla:inecol:v:21:y:2017:i:5:p:1250-1261 is not listed on IDEAS
    2. António Marques & José Fuinhas & José Manso, 2011. "A Quantile Approach to Identify Factors Promoting Renewable Energy in European Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 351-366, July.
    3. Dulal, Hari Bansha & Shah, Kalim U. & Sapkota, Chandan & Uma, Gengaiah & Kandel, Bibek R., 2013. "Renewable energy diffusion in Asia: Can it happen without government support?," Energy Policy, Elsevier, vol. 59(C), pages 301-311.
    4. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    5. Capellaro, Mark, 2016. "Prediction of site specific wind energy value factors," Renewable Energy, Elsevier, vol. 87(P1), pages 430-436.
    6. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    7. Sanders, Dwight R. & Manfredo, Mark R. & Boris, Keith, 2009. "Evaluating information in multiple horizon forecasts: The DOE's energy price forecasts," Energy Economics, Elsevier, vol. 31(2), pages 189-196.
    8. Masini, Andrea & Menichetti, Emanuela, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Energy Policy, Elsevier, vol. 40(C), pages 28-38.
    9. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    10. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    11. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2016. "Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States," Energy, Elsevier, vol. 94(C), pages 533-541.
    12. Dannenberg, Astrid & Mennel, Tim & Moslener, Ulf, 2008. "What does Europe pay for clean energy?--Review of macroeconomic simulation studies," Energy Policy, Elsevier, vol. 36(4), pages 1318-1330, April.
    13. Linderoth, Hans, 2002. "Forecast errors in IEA-countries' energy consumption," Energy Policy, Elsevier, vol. 30(1), pages 53-61, January.
    14. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    15. Sohn, Ira, 2007. "Long-term energy projections: What lessons have we learned?," Energy Policy, Elsevier, vol. 35(9), pages 4574-4584, September.
    16. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    17. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    18. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    19. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    20. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    21. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    22. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    23. Andrea Masini & E. Menichetti, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Post-Print hal-00651706, HAL.
    24. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    25. Zyadin, Anas & Halder, Pradipta & Kähkönen, Tanja & Puhakka, Antero, 2014. "Challenges to renewable energy: A bulletin of perceptions from international academic arena," Renewable Energy, Elsevier, vol. 69(C), pages 82-88.
    26. Wang, Feng & Yin, Haitao & Li, Shoude, 2010. "China's renewable energy policy: Commitments and challenges," Energy Policy, Elsevier, vol. 38(4), pages 1872-1878, April.
    27. Winebrake, James J. & Sakva, Denys, 2006. "An evaluation of errors in US energy forecasts: 1982-2003," Energy Policy, Elsevier, vol. 34(18), pages 3475-3483, December.
    28. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    29. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    30. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    31. repec:oup:renvpo:v:11:y:2017:i:1:p:100-114. is not listed on IDEAS
    32. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
    33. O'Neill, Brian C. & Desai, Mausami, 2005. "Accuracy of past projections of US energy consumption," Energy Policy, Elsevier, vol. 33(8), pages 979-993, May.
    34. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    2. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    3. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, Open Access Journal, vol. 12(5), pages 1-25, March.
    4. Adrian Chmielewski & Jakub Możaryn & Piotr Piórkowski & Krzysztof Bogdziński, 2018. "Comparison of NARX and Dual Polarization Models for Estimation of the VRLA Battery Charging/Discharging Dynamics in Pulse Cycle," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-28, November.
    5. Dincer, Hasan & Yuksel, Serhat, 2019. "Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach," Energy, Elsevier, vol. 175(C), pages 1259-1270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:536-546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.