IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p5828-5865d51258.html
   My bibliography  Save this article

The Implications for Renewable Energy Innovation of Doubling the Share of Renewables in the Global Energy Mix between 2010 and 2030

Author

Listed:
  • Deger Saygin

    (International Renewable Energy Agency, Innovation and Technology Centre (IITC), Robert-Schuman-Platz 3, 53175 Bonn, Germany
    These authors contributed equally to this work.)

  • Ruud Kempener

    (International Renewable Energy Agency, Innovation and Technology Centre (IITC), Robert-Schuman-Platz 3, 53175 Bonn, Germany
    These authors contributed equally to this work.)

  • Nicholas Wagner

    (International Renewable Energy Agency, Innovation and Technology Centre (IITC), Robert-Schuman-Platz 3, 53175 Bonn, Germany
    These authors contributed equally to this work.)

  • Maria Ayuso

    (International Renewable Energy Agency, Innovation and Technology Centre (IITC), Robert-Schuman-Platz 3, 53175 Bonn, Germany
    These authors contributed equally to this work.)

  • Dolf Gielen

    (International Renewable Energy Agency, Innovation and Technology Centre (IITC), Robert-Schuman-Platz 3, 53175 Bonn, Germany
    These authors contributed equally to this work.)

Abstract

Benefits of increasing the renewable energy (RE) share in the total energy mix include better energy security, carbon dioxide emission reductions and improved human health. This paper identifies the potential of RE technologies and role of innovation to double the global RE share from 18% to 36% between 2010 and 2030. As a first step, a Reference Case is developed based on national energy plans of 26 countries which increases the RE share to 21% by 2030. Next, the realizable potential of RE technologies is estimated beyond the Reference Case at country and sector levels. By aggregating country potentials, this paper reveals that the global RE share can double to 36% by 2030. Despite differences in starting points and resource potentials, there is a role for each country in achieving a doubling. For many countries their Reference Cases result in low RE shares and many countries are just beginning to explore ways to increase RE use. The paper identifies action areas where innovation can increase technology development and improve cost-effectiveness, thereby accelerating global RE deployment. More research is required to specify these action areas for individual countries and specific technologies, as well as to identify policy needs to address them.

Suggested Citation

  • Deger Saygin & Ruud Kempener & Nicholas Wagner & Maria Ayuso & Dolf Gielen, 2015. "The Implications for Renewable Energy Innovation of Doubling the Share of Renewables in the Global Energy Mix between 2010 and 2030," Energies, MDPI, vol. 8(6), pages 1-38, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5828-5865:d:51258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/5828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/5828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
    2. Auerswald, Philip E & Branscomb, Lewis M, 2003. "Valleys of Death and Darwinian Seas: Financing the Invention to Innovation Transition in the United States," The Journal of Technology Transfer, Springer, vol. 28(3-4), pages 227-239, August.
    3. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    4. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    5. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    6. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    7. Føyn, T. Helene Ystanes & Karlsson, Kenneth & Balyk, Olexandr & Grohnheit, Poul Erik, 2011. "A global renewable energy system: A modelling exercise in ETSAP/TIAM," Applied Energy, Elsevier, vol. 88(2), pages 526-534, February.
    8. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    9. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    10. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    11. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    12. Saygin, D. & Gielen, D.J. & Draeck, M. & Worrell, E. & Patel, M.K., 2014. "Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1153-1167.
    13. Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
    14. Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
    15. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    16. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Bilal Awan & Muhammad Zubair & Praveen R. P. & Ahmed G. Abokhalil, 2018. "Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    2. Mingqi Wang & Xinqiao Zheng, 2017. "Sensitivity Analysis of Time Length of Photovoltaic Output Power to Capacity Configuration of Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-15, October.
    3. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    4. Nemitallah, Medhat A. & Imteyaz, Binash & Abdelhafez, Ahmed & Habib, Mohamed A., 2019. "Experimental and computational study on stability characteristics of hydrogen-enriched oxy-methane premixed flames," Applied Energy, Elsevier, vol. 250(C), pages 433-443.
    5. Jiefeng Hu & Ka Wai Eric Cheng, 2017. "Predictive Control of Power Electronics Converters in Renewable Energy Systems," Energies, MDPI, vol. 10(4), pages 1-14, April.
    6. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    7. Dolf Gielen & Deger Saygin & Emanuele Taibi & Jean‐Pierre Birat, 2020. "Renewables‐based decarbonization and relocation of iron and steel making: A case study," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1113-1125, October.
    8. Bashir, Muhammad Farhan & MA, Benjiang & Hussain, Hafezali Iqbal & Shahbaz, Muhammad & Koca, Kemal & Shahzadi, Irum, 2022. "Evaluating environmental commitments to COP21 and the role of economic complexity, renewable energy, financial development, urbanization, and energy innovation: Empirical evidence from the RCEP countr," Renewable Energy, Elsevier, vol. 184(C), pages 541-550.
    9. Vaclovas Miškinis & Arvydas Galinis & Inga Konstantinavičiūtė & Vidas Lekavičius & Eimantas Neniškis, 2021. "The Role of Renewable Energy Sources in Dynamics of Energy-Related GHG Emissions in the Baltic States," Sustainability, MDPI, vol. 13(18), pages 1-35, September.
    10. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    11. Miao, Haozeyu & Xu, Haiming & Huang, Gang & Yang, Kai, 2023. "Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models," Renewable Energy, Elsevier, vol. 211(C), pages 809-821.
    12. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.
    2. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    3. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    4. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    6. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    7. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    8. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    9. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    10. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    11. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    12. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    13. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    14. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    15. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    16. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    17. Martin de Wit & Matthew Kuperus Heun & Douglas J Crookes, 2013. "An overview of salient factors, relationships and values to support integrated energy-economic systems dynamic modelling," Working Papers 02/2013, Stellenbosch University, Department of Economics.
    18. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    19. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    20. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5828-5865:d:51258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.