IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p515-d95443.html
   My bibliography  Save this article

Predictive Control of Power Electronics Converters in Renewable Energy Systems

Author

Listed:
  • Jiefeng Hu

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Ka Wai Eric Cheng

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Predictive control has attracted much attention and has been widely used in power electronics and electric drives. However, further developments for applications in the field of renewable energy systems are still under investigation. In this paper, the principles of predictive control are studied with a focus on model predictive control (MPC) and vector-sequence-based predictive control (VPC). Based on these techniques, two control strategies for flexible power supply are developed. They are implemented in the most promising renewable energy systems, namely solar photovoltaic (PV) systems and wind generators, respectively. The experimental results based on a laboratory prototype show that the active and reactive powers supplied by the PV and wind generator can be controlled flexibly with excellent steady-state and transient performance. As the penetration level of the renewable energy sources in electricity network continues to rise, predictive control tends to be an attractive and powerful technique for power electronics converters in renewable energy systems.

Suggested Citation

  • Jiefeng Hu & Ka Wai Eric Cheng, 2017. "Predictive Control of Power Electronics Converters in Renewable Energy Systems," Energies, MDPI, vol. 10(4), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:515-:d:95443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aman Abdulla Tanvir & Adel Merabet & Rachid Beguenane, 2015. "Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System," Energies, MDPI, vol. 8(9), pages 1-20, September.
    2. Deger Saygin & Ruud Kempener & Nicholas Wagner & Maria Ayuso & Dolf Gielen, 2015. "The Implications for Renewable Energy Innovation of Doubling the Share of Renewables in the Global Energy Mix between 2010 and 2030," Energies, MDPI, vol. 8(6), pages 1-38, June.
    3. Zhang, Xinan & Bao, Jie & Wang, Ruigang & Zheng, Chaoxu & Skyllas-Kazacos, Maria, 2017. "Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage," Renewable Energy, Elsevier, vol. 100(C), pages 18-34.
    4. Zhanfeng Song & Yanjun Tian & Zhe Chen & Yanting Hu, 2016. "Enhanced Predictive Current Control of Three-Phase Grid-Tied Reversible Converters with Improved Switching Patterns," Energies, MDPI, vol. 9(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqi Wang & Zhigang Liu, 2018. "Suppression Research Regarding Low-Frequency Oscillation in the Vehicle-Grid Coupling System Using Model-Based Predictive Current Control," Energies, MDPI, vol. 11(7), pages 1-21, July.
    2. Amit Kumer Podder & Md. Habibullah & Md. Tariquzzaman & Eklas Hossain & Sanjeevikumar Padmanaban, 2020. "Power Loss Analysis of Solar Photovoltaic Integrated Model Predictive Control Based On-Grid Inverter," Energies, MDPI, vol. 13(18), pages 1-26, September.
    3. Muhammad M. Fayyaz & Irtaza M. Syed & Yi Meng & Muhammad N. Aman, 2023. "Comprehensive Predictive Control Model for a Three-Phase Four-Legged Inverter," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    5. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    6. Bo Chen & Ping Wang & Yifeng Wang & Wei Li & Fuqiang Han & Shuhuai Zhang, 2017. "Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(10), pages 1-26, October.
    7. Ramon Guzmán & Luís García de Vicuña & Miguel Castilla & Jaume Miret & Antonio Camacho, 2017. "Finite Control Set Model Predictive Control for a Three-Phase Shunt Active Power Filter with a Kalman Filter-Based Estimation," Energies, MDPI, vol. 10(10), pages 1-14, October.
    8. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    10. Huakun Bi & Ping Wang & Zhishuang Wang, 2018. "Common Grounded H-Type Bidirectional DC-DC Converter with a Wide Voltage Conversion Ratio for a Hybrid Energy Storage System," Energies, MDPI, vol. 11(2), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Jin & Leilei Guo & Gang Yao, 2017. "Model Predictive Direct Power Control for Nonredundant Fault Tolerant Grid-Connected Bidirectional Voltage Source Converter," Energies, MDPI, vol. 10(8), pages 1-16, August.
    2. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    4. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    5. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    6. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    7. Xinan Zhang & Ruigang Wang & Jie Bao, 2018. "A Novel Distributed Economic Model Predictive Control Approach for Building Air-Conditioning Systems in Microgrids," Mathematics, MDPI, vol. 6(4), pages 1-21, April.
    8. Shiyang Hu & Guorong Liu & Nan Jin & Leilei Guo, 2018. "Constant-Frequency Model Predictive Direct Power Control for Fault-Tolerant Bidirectional Voltage-Source Converter with Balanced Capacitor Voltage," Energies, MDPI, vol. 11(10), pages 1-20, October.
    9. P. Jayanthi & D. Devaraj, 2022. "LVRT capability enhancement in the grid-connected DFIG-driven WECS using adaptive hysteresis current controller," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7593-7621, June.
    10. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.
    11. Abrar Ahmed Chhipą & Prąsun Chakrabarti & Vadim Bolshev & Tulika Chakrabarti & Gennady Samarin & Alexey N. Vasilyev & Sandeep Ghosh & Alexander Kudryavtsev, 2022. "Modeling and Control Strategy of Wind Energy Conversion System with Grid-Connected Doubly-Fed Induction Generator," Energies, MDPI, vol. 15(18), pages 1-26, September.
    12. Mingqi Wang & Xinqiao Zheng, 2017. "Sensitivity Analysis of Time Length of Photovoltaic Output Power to Capacity Configuration of Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-15, October.
    13. Karol Bot & Inoussa Laouali & António Ruano & Maria da Graça Ruano, 2021. "Home Energy Management Systems with Branch-and-Bound Model-Based Predictive Control Techniques," Energies, MDPI, vol. 14(18), pages 1-27, September.
    14. Camilo I. Martínez-Márquez & Jackson D. Twizere-Bakunda & David Lundback-Mompó & Salvador Orts-Grau & Francisco J. Gimeno-Sales & Salvador Seguí-Chilet, 2019. "Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions," Energies, MDPI, vol. 12(13), pages 1-17, June.
    15. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    16. Miao, Haozeyu & Xu, Haiming & Huang, Gang & Yang, Kai, 2023. "Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models," Renewable Energy, Elsevier, vol. 211(C), pages 809-821.
    17. Gulnar Shaimardanovna Kaliakparova & Y?lena Evgenevna Gridneva & Sara Sarsebekovna Assanova & Sandugash Babagalikyzy Sauranbay & Abdizhapar Djumanovich Saparbayev, 2020. "International Economic Cooperation of Central Asian Countries on Energy Efficiency and Use of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 539-545.
    18. Rubén Bufanio & Luis Arribas & Javier de la Cruz & Timo Karlsson & Mariano Amadío & Andrés Enrique Zappa & Damián Marasco, 2022. "An Update on the Electronic Connection Issues of Low Power SWTs in AC-Coupled Systems: A Review and Case Study," Energies, MDPI, vol. 15(6), pages 1-28, March.
    19. Ahmed Bilal Awan & Muhammad Zubair & Praveen R. P. & Ahmed G. Abokhalil, 2018. "Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    20. Sultana, W. Razia & Sahoo, Sarat Kumar & Sukchai, Sukruedee & Yamuna, S. & Venkatesh, D., 2017. "A review on state of art development of model predictive control for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 391-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:515-:d:95443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.