IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2650-d1094475.html
   My bibliography  Save this article

Comprehensive Predictive Control Model for a Three-Phase Four-Legged Inverter

Author

Listed:
  • Muhammad M. Fayyaz

    (Department of Electrical Engineering, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan)

  • Irtaza M. Syed

    (RRC Power & Energy, Round Rock, TX 78681, USA)

  • Yi Meng

    (RRC Power & Energy, Round Rock, TX 78681, USA)

  • Muhammad N. Aman

    (School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA)

Abstract

This paper presents a comprehensive model predictive control (CMPC) method to control a three-phase four-legged inverter (TP4LI) for PV systems. The proposed TP4LI model aims to predictively model and control switching frequency and higher voltage/current switching to reduce losses. The CMPC model can be operated in four modes, namely standard MPC mode (Mode I), switching frequency reduction (SFR) mode (Mode II), high voltage/current switching loss reduction (SLR) mode (Mode III), and SFR plus SLR mode (Mode IV, a combination of Modes II and III). The proposed CMPC approach controls the TP4LI to (1) successfully track balanced and unbalanced reference currents with balanced or unbalanced loads; (2) reduce switching losses; and (3) keep the generated current total harmonic distortion (THD) within the industry’s recommended limits. The TP4LI model with the CMPC approach was verified and validated in the MATLAB/Simulink for a PV system. The simulation results show good tracking and performance of the TP4LI for balanced and unbalanced reference currents with balanced and unbalanced loads in all four modes of operation.

Suggested Citation

  • Muhammad M. Fayyaz & Irtaza M. Syed & Yi Meng & Muhammad N. Aman, 2023. "Comprehensive Predictive Control Model for a Three-Phase Four-Legged Inverter," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2650-:d:1094475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiefeng Hu & Ka Wai Eric Cheng, 2017. "Predictive Control of Power Electronics Converters in Renewable Energy Systems," Energies, MDPI, vol. 10(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingtao Huang & Feng Bai & Qing Yang & Shiyi Ren, 2023. "A Fault-Tolerant Control Strategy for Three-Level Grid-Connected NPC Inverters after Single-Arm Failure with Optimized SVPWM," Energies, MDPI, vol. 16(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    2. Ramon Guzmán & Luís García de Vicuña & Miguel Castilla & Jaume Miret & Antonio Camacho, 2017. "Finite Control Set Model Predictive Control for a Three-Phase Shunt Active Power Filter with a Kalman Filter-Based Estimation," Energies, MDPI, vol. 10(10), pages 1-14, October.
    3. Yaqi Wang & Zhigang Liu, 2018. "Suppression Research Regarding Low-Frequency Oscillation in the Vehicle-Grid Coupling System Using Model-Based Predictive Current Control," Energies, MDPI, vol. 11(7), pages 1-21, July.
    4. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    5. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    6. Bo Chen & Ping Wang & Yifeng Wang & Wei Li & Fuqiang Han & Shuhuai Zhang, 2017. "Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(10), pages 1-26, October.
    7. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
    8. Huakun Bi & Ping Wang & Zhishuang Wang, 2018. "Common Grounded H-Type Bidirectional DC-DC Converter with a Wide Voltage Conversion Ratio for a Hybrid Energy Storage System," Energies, MDPI, vol. 11(2), pages 1-22, February.
    9. Amit Kumer Podder & Md. Habibullah & Md. Tariquzzaman & Eklas Hossain & Sanjeevikumar Padmanaban, 2020. "Power Loss Analysis of Solar Photovoltaic Integrated Model Predictive Control Based On-Grid Inverter," Energies, MDPI, vol. 13(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2650-:d:1094475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.