IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp925-939.html
   My bibliography  Save this article

Integration costs revisited – An economic framework for wind and solar variability

Author

Listed:
  • Hirth, Lion
  • Ueckerdt, Falko
  • Edenhofer, Ottmar

Abstract

The integration of wind and solar generators into power systems causes “integration costs” – for grids, balancing services, more flexible operation of thermal plants, and reduced utilization of the capital stock embodied in infrastructure, among other things. This paper proposes a framework to analyze and quantify these costs. We propose a definition of integration costs based on the marginal economic value of electricity, or market value – as such a definition can be more easily used in economic cost-benefit assessment than previous approaches. We suggest decomposing integration costs intro three components, according to the principal characteristics of wind and solar power: temporal variability, uncertainty, and location-constraints. Quantitative estimates of these components are extracted from a review of 100 + published studies. At high penetration rates, say a wind market share of 30–40%, integration costs are found to be 25–35 €/MWh, i.e. up to 50% of generation costs. While these estimates are system-specific and subject to significant uncertainty, integration costs are certainly too large to be ignored in high-penetration assessments (but might be ignored at low penetration). The largest single factor is reduced utilization of capital embodied in thermal plants, a cost component that has not been accounted for in most previous integration studies.

Suggested Citation

  • Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:925-939
    DOI: 10.1016/j.renene.2014.08.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    2. Luoma, Jennifer & Mathiesen, Patrick & Kleissl, Jan, 2014. "Forecast value considering energy pricing in California," Applied Energy, Elsevier, vol. 125(C), pages 230-237.
    3. Richard Green & Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, , vol. 33(3), pages 1-22, July.
    4. Paul Simshauser, 2011. "The Hidden Costs of Wind Generation in a Thermal Power System: What Cost?," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 44(3), pages 269-292, September.
    5. Bruce Mountain, 2013. "Market Power and Generation from Renewables: the Case of Wind in the South Australian Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    6. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 67-87, Spring.
    7. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    8. DeCesaro, Jennifer & Porter, Kevin & Milligan, Michael, 2009. "Wind Energy and Power System Operations: A Review of Wind Integration Studies to Date," The Electricity Journal, Elsevier, vol. 22(10), pages 34-43, December.
    9. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Discussion Papers 11-09, Department of Economics, University of Birmingham.
    10. Bushnell, James, 2010. "Building Blocks: Investment in Renewable and Non-Renewable Technologies," Staff General Research Papers Archive 31546, Iowa State University, Department of Economics.
    11. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    12. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    13. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    14. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-248, November.
    15. Belanger, Camille & Gagnon, Luc, 2002. "Adding wind energy to hydropower," Energy Policy, Elsevier, vol. 30(14), pages 1279-1284, November.
    16. Holttinen, H., 2005. "Optimal electricity market for wind power," Energy Policy, Elsevier, vol. 33(16), pages 2052-2063, November.
    17. Hirst, Eric & Hild, Jeffrey, 2004. "The Value of Wind Energy as a Function of Wind Capacity," The Electricity Journal, Elsevier, vol. 17(6), pages 11-20, July.
    18. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    19. DeCarolis, Joseph F. & Keith, David W., 2005. "The Costs of Wind's Variability: Is There a Threshold?," The Electricity Journal, Elsevier, vol. 18(1), pages 69-77.
    20. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    21. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    22. Vandezande, Leen & Meeus, Leonardo & Belmans, Ronnie & Saguan, Marcelo & Glachant, Jean-Michel, 2010. "Well-functioning balancing markets: A prerequisite for wind power integration," Energy Policy, Elsevier, vol. 38(7), pages 3146-3154, July.
    23. Chaves-Ávila, J.P. & Hakvoort, R.A. & Ramos, A., 2014. "The impact of European balancing rules on wind power economics and on short-term bidding strategies," Energy Policy, Elsevier, vol. 68(C), pages 383-393.
    24. Brown, Sarah J. & Rowlands, Ian H., 2009. "Nodal pricing in Ontario, Canada: Implications for solar PV electricity," Renewable Energy, Elsevier, vol. 34(1), pages 170-178.
    25. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    26. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    27. Lewis, Geoffrey McD., 2010. "Estimating the value of wind energy using electricity locational marginal price," Energy Policy, Elsevier, vol. 38(7), pages 3221-3231, July.
    28. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    29. Martin, Brian & Diesendorf, Mark, 1983. "The economics of large-scale wind power in the UK A model of an optimally mixed CEGB electricity grid," Energy Policy, Elsevier, vol. 11(3), pages 259-266, September.
    30. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    31. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    32. Twomey, Paul & Neuhoff, Karsten, 2010. "Wind power and market power in competitive markets," Energy Policy, Elsevier, vol. 38(7), pages 3198-3210, July.
    33. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    3. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    4. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    6. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    7. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    8. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    9. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    10. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    11. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    12. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    13. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    14. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    15. Richard Schmalensee, 2013. "The Performance of U.S. Wind and Solar Generating Units," NBER Working Papers 19509, National Bureau of Economic Research, Inc.
    16. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    17. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    18. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    19. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    20. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:925-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.