IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1129-d140269.html
   My bibliography  Save this article

Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia

Author

Listed:
  • Ahmed Bilal Awan

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al Majmaah 11952, Kingdom of Saudi Arabia)

  • Muhammad Zubair

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al Majmaah 11952, Kingdom of Saudi Arabia)

  • Praveen R. P.

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al Majmaah 11952, Kingdom of Saudi Arabia)

  • Ahmed G. Abokhalil

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al Majmaah 11952, Kingdom of Saudi Arabia
    Electrical Engineering Department, Assiut University, Assiut 71515, Egypt)

Abstract

According to Vision 2030, the Kingdom of Saudi Arabia (K.S.A) plans to harness 9.5 GW of energy from renewable energy sources, which includes a major part of solar PV generation. This massive implementation of solar projects requires an accurate assessment and analysis of solar resource data and PV site selection. This paper presents a detailed analysis of one-year solar radiation data and energy output of 100 kW PV systems at 44 different locations across the K.S.A. Coastal areas have a lower amount of global horizontal irradiance (GHI) as compared to inland areas. Najran University station gives the highest annual electrical output of 172,083 kWh, yield factor of 1721, and capacity utilization factor of 19.6%. Sharurah and Timma TVTC are second and third best with respect to annual PV performance. Similarly, during high load summer season (April–October), Tabuk station is the best location for a PV power plant with an electrical output of 110,250 kWh, yield factor of 1102, and capacity utilization factor of 21.46%. Overall, the northern province of Tabuk is the most feasible region for a solar PV plant. The basic approach presented in this research study compares solar resource pattern and solar PV system output pattern with the load profile of the country. The site selected based on this criterion is recommended to be economically most feasible which can reduce the stress on electricity companies during high load seasons by clipping the peak load during daytime in the hot summer period.

Suggested Citation

  • Ahmed Bilal Awan & Muhammad Zubair & Praveen R. P. & Ahmed G. Abokhalil, 2018. "Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1129-:d:140269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mounir Belloumi & Atef Saad Alshehry, 2015. "Sustainable Energy Development in Saudi Arabia," Sustainability, MDPI, vol. 7(5), pages 1-18, April.
    2. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    3. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    4. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    5. Chalvatzis, Konstantinos J. & Hooper, Elizabeth, 2009. "Energy security vs. climate change: Theoretical framework development and experience in selected EU electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2703-2709, December.
    6. Deger Saygin & Ruud Kempener & Nicholas Wagner & Maria Ayuso & Dolf Gielen, 2015. "The Implications for Renewable Energy Innovation of Doubling the Share of Renewables in the Global Energy Mix between 2010 and 2030," Energies, MDPI, vol. 8(6), pages 1-38, June.
    7. J.J.C. Bruggink, B.C.C. van der Zwaan, 2002. "The role of nuclear energy in establishing sustainable energy paths," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 18(2/3/4), pages 151-180.
    8. Shaahid, S.M. & Al-Hadhrami, L.M. & Rahman, M.K., 2014. "Review of economic assessment of hybrid photovoltaic-diesel-battery power systems for residential loads for different provinces of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 174-181.
    9. Alkhathlan, Khalid & Javid, Muhammad, 2015. "Carbon emissions and oil consumption in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 105-111.
    10. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    11. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    12. Alnaser, W.E. & Alnaser, N.W., 2011. "The status of renewable energy in the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3074-3098, August.
    13. Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Johan Lilliestam & Anthony Patt, 2015. "Barriers, Risks and Policies for Renewables in the Gulf States," Energies, MDPI, vol. 8(8), pages 1-23, August.
    15. Alawaji, Saleh H., 2001. "Evaluation of solar energy research and its applications in Saudi Arabia -- 20 years of experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 59-77, March.
    16. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    17. Alshehry, Atef Saad & Belloumi, Mounir, 2015. "Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 237-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasser Alqahtani & Nazmiye Balta-Ozkan, 2021. "Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia," Energies, MDPI, vol. 14(13), pages 1-21, June.
    2. Muhammad Zubair & Ahmed Bilal Awan, 2021. "Economic viability of solar energy export from the Middle East and North Africa to Europe and South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17986-18007, December.
    3. Nun Pitalúa-Díaz & Fernando Arellano-Valmaña & Jose A. Ruz-Hernandez & Yasuhiro Matsumoto & Hussain Alazki & Enrique J. Herrera-López & Jesús Fernando Hinojosa-Palafox & A. García-Juárez & Ricardo Art, 2019. "An ANFIS-Based Modeling Comparison Study for Photovoltaic Power at Different Geographical Places in Mexico," Energies, MDPI, vol. 12(14), pages 1-16, July.
    4. Amjad Ali, 2023. "Transforming Saudi Arabia’s Energy Landscape towards a Sustainable Future: Progress of Solar Photovoltaic Energy Deployment," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    5. Naief A. Aldossary & Jamal K. Alghamdi & Abdulaziz A. Alzahrani & Ali Alqahtany & Saleh H. Alyami, 2023. "Evaluation of Planned Sustainable Urban Development Projects in Al-Baha Region Using Analytical Hierarchy Process," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    6. Syed Hammad Mian & Khaja Moiduddin & Hisham Alkhalefah & Mustufa Haider Abidi & Faraz Ahmed & Faraz Hussain Hashmi, 2023. "Mechanisms for Choosing PV Locations That Allow for the Most Sustainable Usage of Solar Energy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    7. Tuan-Viet Hoang & Pouya Ifaei & Kijeon Nam & Jouan Rashidi & Soonho Hwangbo & Jong-Min Oh & ChangKyoo Yoo, 2018. "Optimal Management of a Hybrid Renewable Energy System Coupled with a Membrane Bioreactor Using Enviro-Economic and Power Pinch Analyses for Sustainable Climate Change Adaption," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    8. Bai Liu & Yutian Liu & Ailian Zhang, 2021. "Heterogeneous impact of CO2 emissions on renewable energy technology innovation between oil importers and exporters," Energy & Environment, , vol. 32(2), pages 281-294, March.
    9. Yahya Z. Alharthi, 2023. "Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    10. Muhammad Zubair & Ahmed Bilal Awan & Abdullah Al-Ahmadi & Ahmed G. Abo-Khalil, 2018. "NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device," Energies, MDPI, vol. 11(6), pages 1-20, May.
    11. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    12. Abdullahi Abubakar Mas’ud & Hassan Zuhair Al-Garni, 2021. "Optimum Configuration of a Renewable Energy System Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in Northern Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    13. Sofia Spyridonidou & Eva Loukogeorgaki & Dimitra G. Vagiona & Teresa Bertrand, 2022. "Towards a Sustainable Spatial Planning Approach for PV Site Selection in Portugal," Energies, MDPI, vol. 15(22), pages 1-22, November.
    14. Mohamed Mohana & Abdelaziz Salah Saidi & Salem Alelyani & Mohammed J. Alshayeb & Suhail Basha & Ali Eisa Anqi, 2021. "Small-Scale Solar Photovoltaic Power Prediction for Residential Load in Saudi Arabia Using Machine Learning," Energies, MDPI, vol. 14(20), pages 1-18, October.
    15. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    16. Salah Ud-Din Khan & Irfan Wazeer & Zeyad Almutairi, 2023. "Comparative Analysis of SAM and RETScreen Tools for the Case Study of 600 kW Solar PV System Installation in Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    17. Ali S. Alghamdi, 2021. "Performance Enhancement of Roof-Mounted Photovoltaic System: Artificial Neural Network Optimization of Ground Coverage Ratio," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Ahmed Bilal Awan & Mohammed Alghassab & Muhammad Zubair & Abdul Rauf Bhatti & Muhammad Uzair & Ghulam Abbas, 2020. "Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays," Energies, MDPI, vol. 13(14), pages 1-21, July.
    19. Yawei Wang & Frauke Urban & Yuan Zhou & Luyi Chen, 2018. "Comparing the Technology Trajectories of Solar PV and Solar Water Heaters in China: Using a Patent Lens," Sustainability, MDPI, vol. 10(11), pages 1-29, November.
    20. Rami Alamoudi & Osman Taylan & Mehmet Azmi Aktacir & Enrique Herrera-Viedma, 2021. "Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches," Mathematics, MDPI, vol. 9(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    2. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    3. Amro M. Elshurafa & Mohammad H. Aldubyan, 2019. "State-of-Charge Effects on Standalone Solar-Storage Systems in Hot Climates: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    4. Ramli, Makbul A.M. & Twaha, Ssennoga & Al-Hamouz, Zakariya, 2017. "Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 287-297.
    5. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    6. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    7. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    8. Valentine, Scott Victor, 2011. "Emerging symbiosis: Renewable energy and energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4572-4578.
    9. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    10. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    11. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    12. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    13. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    14. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    15. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I. & Muttaqi, K.M. & Moghavvemi, S., 2015. "Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 726-734.
    16. Alshehry, Atef Saad & Belloumi, Mounir, 2017. "Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1339-1347.
    17. K, Ashin Nishan M & ASHIQ, MUHAMMED V, 2019. "Role of Energy use in the Prediction of CO2 Emissions and Growth in India: An Application of Artificial Neural Networks (ANN)," SocArXiv gkpbu, Center for Open Science.
    18. Jamal, Taskin & Urmee, Tania & Calais, Martina & Shafiullah, GM & Carter, Craig, 2017. "Technical challenges of PV deployment into remote Australian electricity networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1309-1325.
    19. Rami Alamoudi & Osman Taylan & Mehmet Azmi Aktacir & Enrique Herrera-Viedma, 2021. "Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches," Mathematics, MDPI, vol. 9(22), pages 1-24, November.
    20. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1129-:d:140269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.