IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp1309-1325.html
   My bibliography  Save this article

Technical challenges of PV deployment into remote Australian electricity networks: A review

Author

Listed:
  • Jamal, Taskin
  • Urmee, Tania
  • Calais, Martina
  • Shafiullah, GM
  • Carter, Craig

Abstract

Gradual technical advancement and rapidly decreasing costs have led to widespread deployment of solar photovoltaic (PV) systems. In Australia, distributed PV systems make up the vast majority of installed PV capacity. In remote communities, distributed PV systems offer a supplementary solution to existing diesel-based electricity generation. However, remote electricity networks, being different from urban networks primarily due to their limited generation capacity and spinning reserve are likely to be critically affected by the variability characteristics of PV generation. The integration of distributed PV systems into conventional remote electricity networks has noteworthy impacts on their technical and non-technical operations that pose new challenges for PV deployment. Significant technical issues are observed in these networks as PV penetration levels increase, such as reduced power quality, inadequate diesel generator dispatch for spinning reserve, increased complexities in network operation and management, unintended islanding and even system blackouts. Utility adopted operational and control strategies significantly influence PV penetration levels in different remote networks around the world, including Australia. This paper reviews the current electrification scenarios in remote Australian networks and focuses on the impacts and technical challenges of distributed PV deployment and the control strategies adopted by remote area power utilities. Some suggestions and recommendations, such as the development of robust control mechanisms incorporating PV forecasting technology, modern network equipment, real-time measurements and network ancillary services provided by inverter coupled generation systems to enhance networks' operational stability and reliability are also presented. This review is of benefit to scientific researchers, investors and different stakeholders, who wish to have a better understanding of distributed PV systems' deployment scenarios into remote electricity networks. As the inherent characteristics of Australian remote electricity networks are similar to those in African and Asian rural electricity networks; the findings, reviews and recommendations presented are also relevant to those networks.

Suggested Citation

  • Jamal, Taskin & Urmee, Tania & Calais, Martina & Shafiullah, GM & Carter, Craig, 2017. "Technical challenges of PV deployment into remote Australian electricity networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1309-1325.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1309-1325
    DOI: 10.1016/j.rser.2017.02.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211730309X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    2. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    3. Byrnes, Liam & Brown, Colin & Wagner, Liam & Foster, John, 2016. "Reviewing the viability of renewable energy in community electrification: The case of remote Western Australian communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 470-481.
    4. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    5. Shaahid, S.M. & Al-Hadhrami, L.M. & Rahman, M.K., 2014. "Review of economic assessment of hybrid photovoltaic-diesel-battery power systems for residential loads for different provinces of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 174-181.
    6. John Foster & Liam Wagner & Liam Byrnes, 2014. "A Review of Distributed Generation for Rural and Remote Area Electrification," Energy Economics and Management Group Working Papers 3-2014, School of Economics, University of Queensland, Australia.
    7. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    8. Shaahid, S.M. & Elhadidy, M.A., 2007. "Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1794-1810, October.
    9. Fekete, Kresimir & Klaic, Zvonimir & Majdandzic, Ljubomir, 2012. "Expansion of the residential photovoltaic systems and its harmonic impact on the distribution grid," Renewable Energy, Elsevier, vol. 43(C), pages 140-148.
    10. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    11. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
    12. Shaahid, S.M. & El-Amin, I., 2009. "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia--A way forward for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 625-633, April.
    13. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    14. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amedeo Andreotti & Alberto Petrillo & Stefania Santini & Alfredo Vaccaro & Domenico Villacci, 2019. "A Decentralized Architecture Based on Cooperative Dynamic Agents for Online Voltage Regulation in Smart Grids," Energies, MDPI, vol. 12(7), pages 1-14, April.
    2. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    3. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    4. Rosa, Carmen Brum & Rigo, Paula Donaduzzi & Rediske, Graciele & Moccellin, Ana Paula & Mairesse Siluk, Julio Cezar & Michels, Leandro, 2021. "How to measure organizational performance of distributed generation in electric utilities? The Brazilian case," Renewable Energy, Elsevier, vol. 169(C), pages 191-203.
    5. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    6. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    7. Năstase, Gabriel & Șerban, Alexandru & Dragomir, George & Brezeanu, Alin Ionuț & Bucur, Irina, 2018. "Photovoltaic development in Romania. Reviewing what has been done," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 523-535.
    8. Sharma, Vanika & Aziz, Syed Mahfuzul & Haque, Mohammed H. & Kauschke, Travis, 2020. "Effects of high solar photovoltaic penetration on distribution feeders and the economic impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Jamal, Taskin & Carter, Craig & Schmidt, Thomas & Shafiullah, G.M. & Calais, Martina & Urmee, Tania, 2019. "An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system," Applied Energy, Elsevier, vol. 254(C).
    10. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Lilies Setiartiti & Rahmat Adiprasetya Al-Hasibi, 2021. "Designing Institutional Models For Renewable Energy Project Sustainability," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 147-156.
    12. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2021. "Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants," Energies, MDPI, vol. 14(11), pages 1-16, May.
    13. Lue Xiong & Mutasim Nour, 2019. "Techno-Economic Analysis of a Residential PV-Storage Model in a Distribution Network," Energies, MDPI, vol. 12(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    4. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    5. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    6. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    7. Mohammed, Ammar & Pasupuleti, Jagadeesh & Khatib, Tamer & Elmenreich, Wilfried, 2015. "A review of process and operational system control of hybrid photovoltaic/diesel generator systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 436-446.
    8. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    9. Amro M. Elshurafa & Mohammad H. Aldubyan, 2019. "State-of-Charge Effects on Standalone Solar-Storage Systems in Hot Climates: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    10. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    11. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    12. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    13. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    14. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    15. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    16. Chih-Ta Tsai & Teketay Mulu Beza & Wei-Bin Wu & Cheng-Chien Kuo, 2019. "Optimal Configuration with Capacity Analysis of a Hybrid Renewable Energy and Storage System for an Island Application," Energies, MDPI, vol. 13(1), pages 1-28, December.
    17. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    18. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    19. Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Salameh, Tareq & Ghenai, Chaouki & Merabet, Adel & Alkasrawi, Malek, 2020. "Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1309-1325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.