IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3284-d1064762.html
   My bibliography  Save this article

Mechanisms for Choosing PV Locations That Allow for the Most Sustainable Usage of Solar Energy

Author

Listed:
  • Syed Hammad Mian

    (Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Khaja Moiduddin

    (Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Hisham Alkhalefah

    (Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Mustufa Haider Abidi

    (Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Faraz Ahmed

    (Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Faraz Hussain Hashmi

    (Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

Abstract

The electrical power need in the Kingdom of Saudi Arabia (KSA) has been escalating at a rapid rate of about 7.5% annually. It has the third highest usage rate in the world as stated by World Energy Council statistics. The rising energy demand has a significant impact on the country’s economy since oil is considered to be its mainstay. Additionally, conventional energy production using fossil fuels is a leading contributor to ecological degradation and adversely influences human health. As a result, Saudi Arabia has taken significant steps to shift from its current status of total reliance on oil to new frontiers of exploration of other kinds of renewable energies. Photovoltaic (PV) solar energy is the most preferred renewable energy to be harnessed in Saudi Arabia. In accordance with Vision 2030, the KSA intends to generate at least 9.5 GW of electricity from green sources, a significant portion of which will come from solar PV power. Since the site peculiarities have a huge influence on the project’s technical and economic dimensions, the scaled-up deployment of solar projects calls for a judicious selection of PV sites. Undoubtedly, performing a thorough solar site survey is the foremost step to establishing a financially viable and successful solar project. Multiple criterion decision-making (MCDM) strategies can be very helpful in making judgments, given that a number of criteria might influence PV site selection. The objective of this research is to provide valuable information on various MCDM approaches that can be utilized to select optimal locations for PV solar plants. A number of variables, including topography, air temperature, dust storms, solar radiation, etc., are considered in this analysis. This study has combined various MCDM techniques in order for the strengths of each method to outweigh the weaknesses of the others. It has been deduced from this analysis that the most crucial factors in choosing PV sites are solar radiation and sunshine hours. It has also been concluded that of the surveyed cities, Tabuk is the optimum location for the construction of a solar power plant due to its high GHI value of 5992 W/m 2 /day and abundant sunshine hours of 12.16 h/day. Additionally, the FAHP-VIKOR method is noted as being the most rigorous, whereas Entropy-GRA is the simplest method.

Suggested Citation

  • Syed Hammad Mian & Khaja Moiduddin & Hisham Alkhalefah & Mustufa Haider Abidi & Faraz Ahmed & Faraz Hussain Hashmi, 2023. "Mechanisms for Choosing PV Locations That Allow for the Most Sustainable Usage of Solar Energy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3284-:d:1064762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Bilal Awan & Muhammad Zubair & Praveen R. P. & Ahmed G. Abokhalil, 2018. "Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    2. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    3. Chia-Nan Wang & Van Thanh Nguyen & Hoang Tuyet Nhi Thai & Duy Hung Duong, 2018. "Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam," Energies, MDPI, vol. 11(6), pages 1-27, June.
    4. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    5. Amy H. I. Lee & He-Yau Kang & Chun-Yu Lin & Kuan-Chin Shen, 2015. "An Integrated Decision-Making Model for the Location of a PV Solar Plant," Sustainability, MDPI, vol. 7(10), pages 1-20, September.
    6. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    7. Aleksandra Bączkiewicz & Bartłomiej Kizielewicz & Andrii Shekhovtsov & Mykhailo Yelmikheiev & Volodymyr Kozlov & Wojciech Sałabun, 2021. "Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon," Energies, MDPI, vol. 14(18), pages 1-21, September.
    8. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    9. Seker, Sukran & Kahraman, Cengiz, 2021. "Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM methodology: A case in Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    10. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    11. Nima Mirzaei, 2022. "A Multicriteria Decision Framework for Solar Power Plant Location Selection Problem with Pythagorean Fuzzy Data: A Case Study on Green Energy in Turkey," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    12. Tao Li & Ang Li & Yimiao Song, 2021. "Development and Utilization of Renewable Energy Based on Carbon Emission Reduction—Evaluation of Multiple MCDM Methods," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    13. Tien-Chin Wang & Su-Yuan Tsai, 2018. "Solar Panel Supplier Selection for the Photovoltaic System Design by Using Fuzzy Multi-Criteria Decision Making (MCDM) Approaches," Energies, MDPI, vol. 11(8), pages 1-22, July.
    14. Syed Hammad Mian & Abdulrahman Al-Ahmari, 2019. "Comparative analysis of different digitization systems and selection of best alternative," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2039-2067, June.
    15. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    16. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    17. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    18. Lee, Wen-Shing & Lin, Yeong-Chuan, 2011. "Evaluating and ranking energy performance of office buildings using Grey relational analysis," Energy, Elsevier, vol. 36(5), pages 2551-2556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2023. "A novel four-stage integrated GIS based fuzzy SWARA approach for solar site suitability with hydrogen storage system," Energy, Elsevier, vol. 278(PA).
    2. Amjad Ali, 2023. "Transforming Saudi Arabia’s Energy Landscape towards a Sustainable Future: Progress of Solar Photovoltaic Energy Deployment," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    3. James J. H. Liou & Peace Y. L. Liu & Sun-Weng Huang, 2023. "A Hybrid Model to Explore the Barriers to Enterprise Energy Storage System Adoption," Mathematics, MDPI, vol. 11(19), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    2. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    3. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    4. Sofia Spyridonidou & Eva Loukogeorgaki & Dimitra G. Vagiona & Teresa Bertrand, 2022. "Towards a Sustainable Spatial Planning Approach for PV Site Selection in Portugal," Energies, MDPI, vol. 15(22), pages 1-22, November.
    5. Ateekh Ur Rehman & Syed Hammad Mian & Usama Umer & Yusuf Siraj Usmani, 2019. "Strategic Outcome Using Fuzzy-AHP-Based Decision Approach for Sustainable Manufacturing," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    6. Aleksandra Bączkiewicz & Bartłomiej Kizielewicz & Andrii Shekhovtsov & Mykhailo Yelmikheiev & Volodymyr Kozlov & Wojciech Sałabun, 2021. "Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon," Energies, MDPI, vol. 14(18), pages 1-21, September.
    7. Khaja Moiduddin & Syed Hammad Mian & Usama Umer & Hisham Alkhalefah & Abdul Sayeed, 2020. "Fuzzy Multicriteria Decision Mapping to Evaluate Implant Design for Maxillofacial Reconstruction," Mathematics, MDPI, vol. 8(12), pages 1-33, November.
    8. Patchara Phochanikorn & Chunqiao Tan, 2019. "An Integrated Multi-Criteria Decision-Making Model Based on Prospect Theory for Green Supplier Selection under Uncertain Environment: A Case Study of the Thailand Palm Oil Products Industry," Sustainability, MDPI, vol. 11(7), pages 1-22, March.
    9. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    10. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    11. Alexei Pérez-Velázquez & Leandro Leysdian Oro-Carralero & Jorge Laureano Moya-Rodríguez, 2020. "Supplier Selection for Photovoltaic Module Installation Utilizing Fuzzy Inference and the VIKOR Method: A Green Approach," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    12. José Ribas, 2014. "An Assessment of Conflicting Intentions in the Use of Multipurpose Water Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3989-4000, September.
    13. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    14. Concetta Manuela La Fata & Toni Lupo & Tommaso Piazza, 2019. "Service quality benchmarking via a novel approach based on fuzzy ELECTRE III and IPA: an empirical case involving the Italian public healthcare context," Health Care Management Science, Springer, vol. 22(1), pages 106-120, March.
    15. Hassan Hashemi & Jalal Bazargan & S. Mousavi, 2013. "A Compromise Ratio Method with an Application to Water Resources Management: An Intuitionistic Fuzzy Set," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2029-2051, May.
    16. Francesco Ciardiello & Andrea Genovese, 2023. "A comparison between TOPSIS and SAW methods," Annals of Operations Research, Springer, vol. 325(2), pages 967-994, June.
    17. Chia-Nan Wang & Van Tran Hoang Viet & Thanh Phong Ho & Van Thanh Nguyen & Syed Tam Husain, 2020. "Optimal Site Selection for a Solar Power Plant in the Mekong Delta Region of Vietnam," Energies, MDPI, vol. 13(16), pages 1-20, August.
    18. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    19. Thomas L. Saaty & Daji Ergu, 2015. "When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1171-1187, November.
    20. Ayough, Ashkan & Boshruei, Setareh & Khorshidvand, Behrooz, 2022. "A new interactive method based on multi-criteria preference degree functions for solar power plant site selection," Renewable Energy, Elsevier, vol. 195(C), pages 1165-1173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3284-:d:1064762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.