IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923010097.html
   My bibliography  Save this article

Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level

Author

Listed:
  • Cabello-López, Tomás
  • Carranza-García, Manuel
  • Riquelme, José C.
  • García-Gutiérrez, Jorge

Abstract

Renewable energies, such as solar power, offer a clean and cost-effective energy source. However, their integration into national electricity grids poses challenges due to their dependence on climate and geography. While numerous studies have focused on solar energy time series, few have specifically addressed the critical task of forecasting solar energy production at the national level. Accurate national-level forecasting is crucial for optimizing energy management, informing policy development, and promoting environmental sustainability. This study aims to address the challenges associated with the significant variability in renewable energy production and its impact on grid stability by improving the accuracy of existing forecasting approaches. To achieve this goal, we evaluate the effectiveness of univariate and multivariate approaches for time series forecasting of national solar energy production data from ESIOS (the Spanish System Operator). Our primary focus is on leveraging external solar variables, such as solar irradiance data. To this end, we propose a methodology to integrate solar irradiance forecasts with historical data from solar power plants in Spain to improve the performance of multivariate models. Subsequently, we compare the performance of classical regression techniques and state-of-the-art deep learning algorithms, presenting univariate and multivariate models for three forecast horizons (1 h, 24 h, and 48 h). Finally, we assess the performance of our best univariate and multivariate models by comparing them with the official forecast of ESIOS. Our findings indicate that the best-performing models are deep-learning multivariate approaches, which benefit from incorporating solar irradiance forecasts, particularly for longer forecast horizons (24 h and 48 h), and avoid the detrimental effects of the Hughes Phenomenon, which seems to hamper non-deep-learning forecasters. The top-performing models, based on Convolutional Networks and Convolutional + Recurrent Neural Networks, outperform ESIOS by reducing mean absolute error by 41% and 47.58%, respectively.

Suggested Citation

  • Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923010097
    DOI: 10.1016/j.apenergy.2023.121645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Donghun & Kim, Kwanho, 2021. "PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information," Renewable Energy, Elsevier, vol. 173(C), pages 1098-1110.
    2. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    3. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
    4. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    5. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    6. Mills, Andrew D. & Levin, Todd & Wiser, Ryan & Seel, Joachim & Botterud, Audun, 2020. "Impacts of variable renewable energy on wholesale markets and generating assets in the United States: A review of expectations and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    8. Koščak Kolin, Sonja & Karasalihović Sedlar, Daria & Kurevija, Tomislav, 2021. "Relationship between electricity and economic growth for long-term periods: New possibilities for energy prediction," Energy, Elsevier, vol. 228(C).
    9. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    10. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    11. Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
    12. Bogdan Bochenek & Jakub Jurasz & Adam Jaczewski & Gabriel Stachura & Piotr Sekuła & Tomasz Strzyżewski & Marcin Wdowikowski & Mariusz Figurski, 2021. "Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    13. Gao, Bixuan & Huang, Xiaoqiao & Shi, Junsheng & Tai, Yonghang & Zhang, Jun, 2020. "Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 1665-1683.
    14. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    2. Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    2. Martins, Guilherme Santos & Giesbrecht, Mateus, 2023. "Hybrid approaches based on Singular Spectrum Analysis and k- Nearest Neighbors for clearness index forecasting," Renewable Energy, Elsevier, vol. 219(P1).
    3. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    4. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    5. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
    6. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    7. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    8. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    9. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    10. Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.
    11. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    12. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    13. Yang, Mao & Zhao, Meng & Huang, Dawei & Su, Xin, 2022. "A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder," Renewable Energy, Elsevier, vol. 194(C), pages 659-673.
    14. Wang, Jianzhou & Yu, Yue & Zeng, Bo & Lu, Haiyan, 2024. "Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis," Energy, Elsevier, vol. 288(C).
    15. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    16. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    17. Jonkers, Jef & Avendano, Diego Nieves & Van Wallendael, Glenn & Van Hoecke, Sofie, 2024. "A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests," Applied Energy, Elsevier, vol. 361(C).
    18. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    19. Mirza, Adeel Feroz & Shu, Zhaokun & Usman, Muhammad & Mansoor, Majad & Ling, Qiang, 2024. "Quantile-transformed multi-attention residual framework (QT-MARF) for medium-term PV and wind power prediction," Renewable Energy, Elsevier, vol. 220(C).
    20. Chen, Xiang & Ding, Kun & Zhang, Jingwei & Han, Wei & Liu, Yongjie & Yang, Zenan & Weng, Shuai, 2022. "Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923010097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.