IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1469-d1614023.html
   My bibliography  Save this article

Modeling Parametric Forecasts of Solar Energy over Time in the Mid-North Area of Mozambique

Author

Listed:
  • Fernando Venâncio Mucomole

    (CS-OGET—Center of Excellence of Studies in Oil and Gas Engineering and Technology, Faculty of Engineering, Eduardo Mondlane University, Mozambique Avenue Km 1.5, Maputo 257, Mozambique
    CPE—Centre of Research in Energies, Faculty of Sciences, Eduardo Mondlane University, Main Campus No. 3453, Maputo 257, Mozambique
    Department of Physics, Faculty of Sciences, Eduardo Mondlane University, Main Campus No. 3453, Maputo 257, Mozambique)

  • Carlos Augusto Santos Silva

    (Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, 1600-214 Lisbon, Portugal)

  • Lourenço Lázaro Magaia

    (Department of Mathematics and Informatics, Faculty of Science, Eduardo Mondlane University, Main Campus No. 3453, Maputo 257, Mozambique)

Abstract

Because of variations in the amount of solar energy that reaches the Earth’s surface, the output of solar power plants can undergo significant variability in the electricity generated. To solve this conundrum, modeling the parametric forecast of short-scale solar energy across Mozambique’s Mid-North region was the goal of this study. The parametric model applied consists of machine learning models based on the parametric analysis of all atmospheric, geographic, climatic, and spatiotemporal elements that impact the fluctuation in solar energy. It highlights the essential importance of the exact management of the interferential power density of each parameter influencing the availability of super solar energy. It enhances the long and short forecasts, estimates and scales, and geographic location, and provides greater precision, compared to other forecasting models. We selected eleven Mid-North region sites that collected data between 2019 and 2021 for the validation sample. The findings demonstrate a significant connection in the range of 0.899 to 0.999 between transmittances and irradiances caused by aerosols, water vapor, evenly mixed gases, and ozone. Uniformly mixed gases exhibit minimal attenuation, with a transmittance of about 0.985 in comparison to other atmospheric constituents. Despite the increased precision obtained by parameterization, the area still offers potential for solar application, with average values of 25% and 51% for clear skies and intermediate conditions, respectively. The estimated solar energy allows the model to be evaluated in any reality since it is within the theoretical irradiation spectrum under clear skies.

Suggested Citation

  • Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Modeling Parametric Forecasts of Solar Energy over Time in the Mid-North Area of Mozambique," Energies, MDPI, vol. 18(6), pages 1-50, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1469-:d:1614023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
    2. Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    3. Li, Jiaming & Ward, John K. & Tong, Jingnan & Collins, Lyle & Platt, Glenn, 2016. "Machine learning for solar irradiance forecasting of photovoltaic system," Renewable Energy, Elsevier, vol. 90(C), pages 542-553.
    4. Arumugham, Dinesh Rajan & Rajendran, Parvathy, 2021. "Modelling global solar irradiance for any location on earth through regression analysis using high-resolution data," Renewable Energy, Elsevier, vol. 180(C), pages 1114-1123.
    5. David Puga-Gil & Gonzalo Astray & Enrique Barreiro & Juan F. Gálvez & Juan Carlos Mejuto, 2022. "Global Solar Irradiation Modelling and Prediction Using Machine Learning Models for Their Potential Use in Renewable Energy Applications," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    6. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    7. Alizamir, Meysam & Kim, Sungwon & Kisi, Ozgur & Zounemat-Kermani, Mohammad, 2020. "A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions," Energy, Elsevier, vol. 197(C).
    8. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah & Raed M. Abendeh & Rami Alawneh, 2023. "ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations," Energies, MDPI, vol. 16(13), pages 1-24, June.
    9. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    10. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    11. Kaur, Amanpreet & Nonnenmacher, Lukas & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Benefits of solar forecasting for energy imbalance markets," Renewable Energy, Elsevier, vol. 86(C), pages 819-830.
    12. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    13. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    14. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    15. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Wang, Chao & Yu, Xiang & Jiang, Zhiqiang & Zhou, Jianzhong, 2019. "Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Cao, J.C. & Cao, S.H., 2006. "Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis," Energy, Elsevier, vol. 31(15), pages 3435-3445.
    17. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2024. "Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique," Energies, MDPI, vol. 17(11), pages 1-29, May.
    18. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    19. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    20. Benghanem, M. & Joraid, A.A., 2007. "A multiple correlation between different solar parameters in Medina, Saudi Arabia," Renewable Energy, Elsevier, vol. 32(14), pages 2424-2435.
    21. Dyson, Mark E.H. & Borgeson, Samuel D. & Tabone, Michaelangelo D. & Callaway, Duncan S., 2014. "Using smart meter data to estimate demand response potential, with application to solar energy integration," Energy Policy, Elsevier, vol. 73(C), pages 607-619.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    2. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor," Data, MDPI, vol. 10(3), pages 1-15, March.
    3. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    4. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    5. Na Sun & Nan Zhang & Shuai Zhang & Tian Peng & Wei Jiang & Jie Ji & Xiangmiao Hao, 2022. "An Integrated Framework Based on an Improved Gaussian Process Regression and Decomposition Technique for Hourly Solar Radiation Forecasting," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    6. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    7. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    8. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    9. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    10. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    11. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    12. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    13. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    14. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    16. John Boland, 2020. "Characterising Seasonality of Solar Radiation and Solar Farm Output," Energies, MDPI, vol. 13(2), pages 1-15, January.
    17. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
    18. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    19. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    20. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1469-:d:1614023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.