IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3304-d1686158.html
   My bibliography  Save this article

Mapping of the Literal Regressive and Geospatial–Temporal Distribution of Solar Energy on a Short-Scale Measurement in Mozambique Using Machine Learning Techniques

Author

Listed:
  • Fernando Venâncio Mucomole

    (CS-OGET—Center of Excellence of Studies in Oil and Gas Engineering and Technology, Faculty of Engineering, Eduardo Mondlane University, Mozambique Avenue Km 1.5, Maputo 257, Mozambique
    CPE—Centre of Research in Energies, Faculty of Sciences, Eduardo Mondlane University, Main Campus No. 3453, Maputo 257, Mozambique
    Department of Physics, Faculty of Sciences, Eduardo Mondlane University, Main Campus No. 3453, Maputo 257, Mozambique)

  • Carlos Augusto Santos Silva

    (Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, 1600-214 Lisbon, Portugal)

  • Lourenço Lázaro Magaia

    (Department of Mathematics and Informatics, Faculty of Science, Eduardo Mondlane University, Main Campus No. 3453, Maputo 257, Mozambique)

Abstract

The earth’s surface has an uneven solar energy density that is sufficient to stimulate solar photovoltaic (PV) production. This causes variations in a solar plant’s output, which are impacted by geometrical elements and atmospheric conditions that prevent it from passing. Motivated by the focus on encouraging increased PV production efficiency, the goal was to use machine learning models (MLM) to map the distribution of solar energy in Mozambique in a regressive literal and geospatial–temporal manner on a short measurement scale. The clear-sky index K t * theoretical approach was applied in conjunction with MLM that emphasized random forest (RF) and artificial neural networks (ANNs). Solar energy mapping was the result of the methodology, which involved statistically calculating K t * for the analysis of solar energy in correlational and causal terms of the space-time distribution. Utilizing data from PVGIS, NOAA, NASA, and Meteonorm, a sample of solar energy was gathered at 11 measurement stations in Mozambique over a period of 1 to 10 min between 2012 and 2014 as part of the FUNAE and INAM measurement programs. The statistical findings show a high degree of solar energy incidence, with increments ∆ K t * in the average order of −0.05 and K t * mostly ranging between 0.4 and 0.9. In 2012 and 2014, K t * was 0.8956 and 0.6986, respectively, because clear days had a higher incident flux and intermediate days have a higher frequency of ∆ K t * on clear days and a higher occurrence density. There are more cloudy days now 0.5214 as opposed to 0.3569. Clear days are found to be influenced by atmospheric transmittance because of their high incident flux, whereas intermediate days exhibit significant variations in the region’s solar energy.

Suggested Citation

  • Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Mapping of the Literal Regressive and Geospatial–Temporal Distribution of Solar Energy on a Short-Scale Measurement in Mozambique Using Machine Learning Techniques," Energies, MDPI, vol. 18(13), pages 1-55, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3304-:d:1686158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3304/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3304-:d:1686158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.