IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003064.html
   My bibliography  Save this article

End-to-end learning of representative PV capacity factors from aggregated PV feed-ins

Author

Listed:
  • Zech, Matthias
  • von Bremen, Lueder

Abstract

Energy system models rely on accurate weather information to capture the spatio-temporal characteristics of renewable energy generation. Whereas energy system models are often solved with high abstraction of the actual energy system, meteorological data from reanalysis or satellites provides rich gridded information of the weather. The mapping from meteorological data to renewable energy generation usually relies on major assumptions as for solar photovoltaic energy the photovoltaic module parameters. In this study, we show that these assumptions can lead to large deviations between the reported and estimated energy, as shown for the case of photovoltaic energy in Germany. We propose a novel gradient-based end-to-end framework that can learn local representative photovoltaic capacity factors from aggregated PV feed-ins. As part of the end-to-end framework, we compare physical and neural network model formulations to obtain a functional mapping from meteorological data to photovoltaic capacity factors. We show that all the methods developed have better performance than commonly used reference methods. Both physical and neural network models have much better performance than reference models whereas operational use cases may prefer the neural network due to higher accuracy while interpretable, physical models are more suited to academic settings.

Suggested Citation

  • Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003064
    DOI: 10.1016/j.apenergy.2024.122923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.