IDEAS home Printed from https://ideas.repec.org/p/diw/diwddc/dd88.html
   My bibliography  Save this paper

dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market

Author

Listed:
  • Clemens Gerbaulet
  • Casimir Lorenz

Abstract

This Data Documentation presents a dynamic investment and dispatch model for Europe named dynELMOD. The model endogenously determines investments into conventional and renewable power plants, different storage technologies including demand side management measures, and the electricity grid in five-year steps in Europe until 2050 under full or myopic foresight. The underlying electricity grid and cross-border interaction between countries is approximated using a flow-based market coupling approach using a PTDF matrix. Carbon emission restictions can be modeled using an emission path, an emission budget, or an emission price. For the investment decisions a time frame reduction technique is applied, which is also presented in this document. The code and the dataset are made publicly available under an open source license on the website of DIW Berlin. The model results show that under almost complete decarbonization renewable energy sources in conjunction with storage capacities will provide the majority of the electricity generation in Europe. At the same time with a rising renewables share, especially after 2040, the need for storage capacities increases. No additional capacity from nuclear energy or fossil fuels is installed, due to high costs and in order to meet the greenhouse gas emission target.

Suggested Citation

  • Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwddc:dd88
    as

    Download full text from publisher

    File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.558112.de/diw_datadoc_2017-088.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    2. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    3. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    4. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    5. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    6. Leonidas Mantzos & Tobias Wiesenthal & Nicoleta Anca Matei & Mate Rozsai & Elena Navajas Cawood & Ioanna Kourti & Anastasios Papafragkou & Peter Russ & Antonio Soria Ramirez, 2016. "POTEnCIA model description - version 0.9," JRC Working Papers JRC100638, Joint Research Centre (Seville site).
    7. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    8. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    9. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    10. Zerrahn, Alexander & Schill, Wolf-Peter, 2015. "On the representation of demand-side management in power system models," Energy, Elsevier, vol. 84(C), pages 840-845.
    11. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    12. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    13. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    14. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    15. Alexander Zerrahn & Wolf-Peter Schill, 2015. "A Greenfield Model to Evaluate Long-Run Power Storage Requirements for High Shares of Renewables," Discussion Papers of DIW Berlin 1457, DIW Berlin, German Institute for Economic Research.
    16. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    17. repec:eee:eneeco:v:64:y:2017:i:c:p:583-599 is not listed on IDEAS
    18. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    20. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.
    21. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    22. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
    23. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    24. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    25. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    26. repec:eee:eneeco:v:64:y:2017:i:c:p:638-650 is not listed on IDEAS
    27. Denny Ellerman & Vanessa Valero & Aleksandar Zaklan, 2015. "An Analysis of Allowance Banking in the EU ETS," RSCAS Working Papers 2015/29, European University Institute.
    28. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    29. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    30. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    31. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    32. Spiecker, Stephan & Weber, Christoph, 2014. "The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis," Energy Policy, Elsevier, vol. 65(C), pages 185-197.
    33. Després, Jacques & Mima, Silvana & Kitous, Alban & Criqui, Patrick & Hadjsaid, Nouredine & Noirot, Isabelle, 2017. "Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis," Energy Economics, Elsevier, vol. 64(C), pages 638-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:appene:v:239:y:2019:i:c:p:560-580 is not listed on IDEAS
    2. Benjamin Böcker & Robin Leisen & Christoph Weber, "undated". "Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack," EWL Working Papers 1806, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    3. repec:eee:renene:v:141:y:2019:i:c:p:973-987 is not listed on IDEAS
    4. repec:zbw:espost:200209 is not listed on IDEAS

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwddc:dd88. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek). General contact details of provider: http://edirc.repec.org/data/diwbede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.