IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i11p6674-6685.html
   My bibliography  Save this article

Fluctuating renewables in a long-term climate change mitigation strategy

Author

Listed:
  • Ludig, Sylvie
  • Haller, Markus
  • Schmid, Eva
  • Bauer, Nico

Abstract

Integrated Assessment models, widely applied in climate change mitigation research, show that renewable energy sources (RES) play an important role in the decarbonization of the electricity sector. However, the representation of relevant technologies in those models is highly stylized, thereby omitting important information about the variability of electricity demand and renewables supply. We present a power system model combining long time scales of climate change mitigation and power system investments with short-term fluctuations of RES. Investigating the influence of increasingly high temporal resolution on the optimal technology mix yields two major findings: the amount of flexible natural gas technologies for electricity generation rises while the share of wind energy only depends on climate policy constraints. Furthermore, overall power system costs increase as temporal resolution is refined in the model, while mitigation costs remain unaffected.

Suggested Citation

  • Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6674-6685
    DOI: 10.1016/j.energy.2011.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & Ehrenmann, Andreas & Butler, Lucy & Cust, Jim & Hoexter, Harriet & Keats, Kim & Kreczko, Adam & Sinden, Graham, 2008. "Space and time: Wind in an investment planning model," Energy Economics, Elsevier, vol. 30(4), pages 1990-2008, July.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    4. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    5. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    6. Rosen, Johannes & Tietze-Stöckinger, Ingela & Rentz, Otto, 2007. "Model-based analysis of effects from large-scale wind power production," Energy, Elsevier, vol. 32(4), pages 575-583.
    7. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    8. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    10. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    11. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2008. "Network constrained wind integration on Vancouver Island," Energy Policy, Elsevier, vol. 36(2), pages 591-602, February.
    12. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    13. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
    2. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    3. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    4. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    5. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    6. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    7. van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.
    8. van Kooten, G. Cornelis, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 54370, University of Victoria, Resource Economics and Policy.
    9. Stephan Nagl, Michaela Fursch, and Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    11. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    12. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    13. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    14. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    15. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    16. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    17. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data," Energy, Elsevier, vol. 66(C), pages 458-469.
    18. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    19. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    20. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.

    More about this item

    Keywords

    Renewables; Variability; Power system modeling; CO2 price;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6674-6685. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.