IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i10p1857-1863.html
   My bibliography  Save this article

Germany's wind energy: The potential for fossil capacity replacement and cost saving

Author

Listed:
  • Weigt, Hannes

Abstract

Wind energy has become the major renewable energy source in Germany with an installed capacity of more than 20Â GW and an annual output of about 40Â TWÂ h in 2007. In this paper we analyze the extent to which wind energy can replace fossil capacities based on wind injection and demand data for 2006 through June 2008. The results indicate that the wind potential in Germany will not allow a significant reduction of fossil capacities. We also assess the potential savings due to wind energy. The German market is modeled with and without wind input to estimate the net savings of fossil fuels in the observation period. We find that the cost-saving potential for electricity production is quite significant and exceeds the subsidies.

Suggested Citation

  • Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1857-1863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00313-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rathmann, M., 2007. "Do support systems for RES-E reduce EU-ETS-driven electricity prices?," Energy Policy, Elsevier, vol. 35(1), pages 342-349, January.
    2. Bode, Sven, 2006. "On the impact of renewable energy support schemes on power prices," HWWI Research Papers 4-7, Hamburg Institute of International Economics (HWWI).
    3. Rosen, Johannes & Tietze-Stöckinger, Ingela & Rentz, Otto, 2007. "Model-based analysis of effects from large-scale wind power production," Energy, Elsevier, vol. 32(4), pages 575-583.
    4. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    5. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    6. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2007. "The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Working Papers "Sustainability and Innovation" S7/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Weigt, Hannes & Hirschhausen, Christian von, 2008. "Price formation and market power in the German wholesale electricity market in 2006," Energy Policy, Elsevier, vol. 36(11), pages 4227-4234, November.
    8. Hoogwijk, Monique & van Vuuren, Detlef & de Vries, Bert & Turkenburg, Wim, 2007. "Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy," Energy, Elsevier, vol. 32(8), pages 1381-1402.
    9. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    10. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    11. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2008. "Considerations on the backup of wind power: Operational backup," Applied Energy, Elsevier, vol. 85(9), pages 787-799, September.
    12. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    2. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    3. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    4. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    5. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2010. "Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2019-2028, September.
    6. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    7. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    8. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.
    9. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    10. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data," Energy, Elsevier, vol. 66(C), pages 458-469.
    11. Kallabis, Thomas & Pape, Christian & Weber, Christoph, 2016. "The plunge in German electricity futures prices – Analysis using a parsimonious fundamental model," Energy Policy, Elsevier, vol. 95(C), pages 280-290.
    12. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    13. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    15. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    16. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    17. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    18. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    19. repec:dui:wpaper:1504 is not listed on IDEAS
    20. Trujillo-Baute, Elisa & del Río, Pablo & Mir-Artigues, Pere, 2018. "Analysing the impact of renewable energy regulation on retail electricity prices," Energy Policy, Elsevier, vol. 114(C), pages 153-164.
    21. Kaller, Alexander & Bielen, Samantha & Marneffe, Wim, 2018. "The impact of regulatory quality and corruption on residential electricity prices in the context of electricity market reforms," Energy Policy, Elsevier, vol. 123(C), pages 514-524.

    More about this item

    Keywords

    L94 L51 D61 Electricity Wind energy Reserve Cost saving Germany;

    JEL classification:

    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1857-1863. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nithya Sathishkumar (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.