IDEAS home Printed from
   My bibliography  Save this paper

DIMENSION - A Dispatch and Investment Model for European Electricity Markets


  • Richter, Jan

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln)


A linear energy system model is presented which optimises the future development of electricity generation capacities and their dispatch in Europe. Besides conventional power plants, combined heat and power plants and power storages, the model considers technologies that support the future high feed in of renewable energies. These technologies include demand side management processes and virtual power storages consisting of electric vehicles.

Suggested Citation

  • Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  • Handle: RePEc:ris:ewikln:2011_003

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    1. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    3. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    4. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    5. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    6. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, Open Access Journal, vol. 11(9), pages 1-13, August.
    7. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, Open Access Journal, vol. 10(9), pages 1-18, September.
    8. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    9. Lucio, Nilson Rogerio & Lamas, Wendell de Queiroz & de Camargo, Jose Rubens, 2013. "Strategic energy management in the primary aluminium industry: Self-generation as a competitive factor," Energy Policy, Elsevier, vol. 59(C), pages 182-188.
    10. Liao, Siyang & Xu, Jian & Sun, Yuanzhang & Bao, Yi, 2018. "Local utilization of wind electricity in isolated power systems by employing coordinated control scheme of industrial energy-intensive load," Applied Energy, Elsevier, vol. 217(C), pages 14-24.
    11. Dandan Zhu & Wenying Liu & Yang Hu & Weizhou Wang, 2018. "A Practical Load-Source Coordinative Method for Further Reducing Curtailed Wind Power in China with Energy-Intensive Loads," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-14, October.
    12. Michaela Fursch & Dietmar Lindenberger & Raimund Malischek & Stephan Nagl & Timo Panke & Johannes Truby, 2012. "German Nuclear Policy Reconsidered: Implications for the Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    13. Coninx, Kristof & Deconinck, Geert & Holvoet, Tom, 2018. "Who gets my flex? An evolutionary game theory analysis of flexibility market dynamics," Applied Energy, Elsevier, vol. 218(C), pages 104-113.
    14. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    15. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    16. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    17. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    18. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    19. Fürsch, Michaela & Lindenberger, Dietmar, 2013. "Promotion of Electricity from Renewable Energy in Europe post 2020 - the Economic Benefits of Cooperation," EWI Working Papers 2013-16, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.

    More about this item


    Energy system model; European electricity markets; Combined heat and power; Demand Side Management; Battery electric vehicles;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ewikln:2011_003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Williams (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.