IDEAS home Printed from https://ideas.repec.org/p/diw/diwddc/dd68.html
   My bibliography  Save this paper

Current and Prospective Costs of Electricity Generation until 2050

Author

Listed:
  • Andreas Schröder
  • Friedrich Kunz
  • Jan Meiss
  • Roman Mendelevitch
  • Christian von Hirschhausen

Abstract

No abstract is available for this item.

Suggested Citation

  • Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwddc:dd68
    as

    Download full text from publisher

    File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.424566.de/diw_datadoc_2013-068.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nagl, Stephan & Fürsch, Michaela & Jägemann, Cosima & Bettzüge, Marc Oliver, 2011. "The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants," EWI Working Papers 2011-8, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Hernández-Moro, J. & Martínez-Duart, J.M., 2012. "CSP electricity cost evolution and grid parities based on the IEA roadmaps," Energy Policy, Elsevier, vol. 41(C), pages 184-192.
    3. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    4. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    5. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
    6. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    7. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    8. Liam Wagner & John Foster, 2011. "Is There an Optimal Entry Time for Carbon Capture and Storage? A Case Study for Australia's National Electricity Market," Energy Economics and Management Group Working Papers 07, School of Economics, University of Queensland, Australia.
    9. Rammerstorfer, Margarethe & Eisl, Roland, 2011. "Carbon capture and storage—Investment strategies for the future?," Energy Policy, Elsevier, vol. 39(11), pages 7103-7111.
    10. Zweibel, Ken, 2010. "Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost?," Energy Policy, Elsevier, vol. 38(11), pages 7519-7530, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwddc:dd68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek). General contact details of provider: http://edirc.repec.org/data/diwbede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.