IDEAS home Printed from https://ideas.repec.org/f/pme573.html
   My authors  Follow this author

Roman Mendelevitch

Personal Details

First Name:Roman
Middle Name:
Last Name:Mendelevitch
Suffix:
RePEc Short-ID:pme573

Affiliation

(99%) Arbeitsgruppe Ressourcenökonomik
Institut für Agrar- und Gartenbauwissenschaften
Humboldt-Universität Berlin

Berlin, Germany
http://www.resource-economics.hu-berlin.de/

+49-030-2093-46360
+49-030-2093-46361
Unter den Linden 6, D-10099 Berlin
RePEc:edi:rehubde (more details at EDIRC)

(1%) DIW Berlin (Deutsches Institut für Wirtschaftsforschung)

Berlin, Germany
http://www.diw.de/

xx49-30-89789-0
xx49-30-89789-200
Mohrenstraße 58, D-10117 Berlin
RePEc:edi:diwbede (more details at EDIRC)

Research output

as
Jump to: Working papers Articles Books

Working papers

  1. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.
  2. Tim Scherwath & Ben Wealer & Roman Mendelevitch, 2019. "Nuclear Decommissioning after the German Nuclear Phase-Out: An Integrated View on New Regulations and Nuclear Logistics," Discussion Papers of DIW Berlin 1779, DIW Berlin, German Institute for Economic Research.
  3. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
  4. Makpal Assembayeva & Jonas Egerer & Roman Mendelevitch & Nurkhat Zhakiyev, 2017. "A Spatial Electricity Market Model for the Power System of Kazakhstan," Discussion Papers of DIW Berlin 1659, DIW Berlin, German Institute for Economic Research.
  5. Alexander Kunith & Roman Mendelevitch & Dietmar Goehlich, 2016. "Electrification of a City Bus Network: An Optimization Model for Cost-Effective Placing of Charging Infrastructure and Battery Sizing of Fast Charging Electric Bus Systems," Discussion Papers of DIW Berlin 1577, DIW Berlin, German Institute for Economic Research.
  6. Roman Mendelevitch, 2016. "Testing Supply-Side Climate Policies for the Global Steam Coal Market - Can They Curb Coal Consumption?," Discussion Papers of DIW Berlin 1604, DIW Berlin, German Institute for Economic Research.
  7. Roman Mendelevitch & Thanh Thien Dang, 2016. "Nuclear Power and the Uranium Market: Are Reserves and Resources Sufficient?," DIW Roundup: Politik im Fokus 98, DIW Berlin, German Institute for Economic Research.
  8. Franziska Holz & Clemens Haftendorn & Roman Mendelevitch & Christian von Hirschhausen, 2016. "A Model of the International Steam Coal Market (COALMOD-World)," Data Documentation 85, DIW Berlin, German Institute for Economic Research.
  9. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2015. "Market Power Rents and Climate Change Mitigation: A Rationale for Coal Taxes?," Discussion Papers of DIW Berlin 1471, DIW Berlin, German Institute for Economic Research.
  10. Kim Collins & Roman Mendelevitch, 2015. "Leaving Coal Unburned: Options for Demand-Side and Supply-Side Policies," DIW Roundup: Politik im Fokus 87, DIW Berlin, German Institute for Economic Research.
  11. Roman Mendelevitch & Pao-Yu Oei, 2015. "The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)," Discussion Papers of DIW Berlin 1521, DIW Berlin, German Institute for Economic Research.
  12. Mendelevitch, Roman & Richter, Phillip & Jotzo, Frank, 2015. "Market Power Rents and Climate Change Mitigation: A Rationale for Coal Export Taxes?," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112896, Verein für Socialpolitik / German Economic Association.
  13. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
  14. Roman Mendelevitch, 2013. "The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application," Discussion Papers of DIW Berlin 1308, DIW Berlin, German Institute for Economic Research.
  15. Roman Mendelevitch & Johannes Herold & Pao-Yu Oei & Andreas Tissen, 2010. "CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe," Discussion Papers of DIW Berlin 1052, DIW Berlin, German Institute for Economic Research.

Articles

  1. Pao-Yu Oei & Roman Mendelevitch, 2019. "Prospects for steam coal exporters in the era of climate policies: a case study of Colombia," Climate Policy, Taylor & Francis Journals, vol. 19(1), pages 73-91, January.
  2. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.
  3. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.
  4. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.
  5. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 171-194.
  6. Christian von Hirschhausen & Claudia Kemfert & Friedrich Kunz & Roman Mendelevitch, 2013. "Europäische Stromerzeugung nach 2020: Beitrag erneuerbarer Energien nicht unterschätzen," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(29), pages 3-13.
  7. Christian von Hirschhausen & Claudia Kemfert & Friedrich Kunz & Roman Mendelevitch, 2013. "European Electricity Generation Post-2020: Renewable Energy Not To Be Underestimated," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 3(9), pages 16-28.

Books

  1. Jonas Egerer & Roman Mendelevitch & Christian von Hirschhausen, 2014. "A Lower Carbon Strategy for the Electricity Sector of Kazakhstan to 2030/50: Scenarios for Generation and Network Development ; Technical Report," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 85, number pbk85, January.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," Energy Policy, Elsevier, vol. 144(C).
    2. Christian von Hirschhausen & Claudia Kemfert & Fabian Praeger, 2020. "Fossil Natural Gas Exit – A New Narrative for the European Energy Transformation towards Decarbonization," Discussion Papers of DIW Berlin 1892, DIW Berlin, German Institute for Economic Research.

  2. Tim Scherwath & Ben Wealer & Roman Mendelevitch, 2019. "Nuclear Decommissioning after the German Nuclear Phase-Out: An Integrated View on New Regulations and Nuclear Logistics," Discussion Papers of DIW Berlin 1779, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Wegel, Sebastian & Czempinski, Victoria & Oei, Pao-Yu & Wealer, Ben, 2019. "Transporting and Storing High-Level Nuclear Waste in the U.S.—Insights from a Mathematical Model," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 1-23.

  3. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    2. Schreiner, Lena & Madlener, Reinhard, 2019. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," FCN Working Papers 11/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Apr 2020.
    3. Neetzow, Paul & Pechan, Anna & Eisenack, Klaus, 2018. "Electricity storage and transmission: Complements or substitutes?," Energy Economics, Elsevier, vol. 76(C), pages 367-377.
    4. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.

  4. Alexander Kunith & Roman Mendelevitch & Dietmar Goehlich, 2016. "Electrification of a City Bus Network: An Optimization Model for Cost-Effective Placing of Charging Infrastructure and Battery Sizing of Fast Charging Electric Bus Systems," Discussion Papers of DIW Berlin 1577, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.

  5. Roman Mendelevitch, 2016. "Testing Supply-Side Climate Policies for the Global Steam Coal Market - Can They Curb Coal Consumption?," Discussion Papers of DIW Berlin 1604, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.
    2. Philippe Le Billon & Berit Kristoffersen, 2020. "Just cuts for fossil fuels? Supply-side carbon constraints and energy transition," Environment and Planning A, , vol. 52(6), pages 1072-1092, September.
    3. Song, Yunting & Wang, Nuo, 2019. "Exploring temporal and spatial evolution of global coal supply-demand and flow structure," Energy, Elsevier, vol. 168(C), pages 1073-1080.

  6. Roman Mendelevitch & Thanh Thien Dang, 2016. "Nuclear Power and the Uranium Market: Are Reserves and Resources Sufficient?," DIW Roundup: Politik im Fokus 98, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Ben Wealer & Christian von Hirschhausen, 2020. "Nuclear Power as a System Good: Organizational Models for Production along the Value-Added Chain," Discussion Papers of DIW Berlin 1883, DIW Berlin, German Institute for Economic Research.

  7. Franziska Holz & Clemens Haftendorn & Roman Mendelevitch & Christian von Hirschhausen, 2016. "A Model of the International Steam Coal Market (COALMOD-World)," Data Documentation 85, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.
    2. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.

  8. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2015. "Market Power Rents and Climate Change Mitigation: A Rationale for Coal Taxes?," Discussion Papers of DIW Berlin 1471, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Michael Lazarus & Harro van Asselt, 2018. "Fossil fuel supply and climate policy: exploring the road less taken," Climatic Change, Springer, vol. 150(1), pages 1-13, September.
    2. Suphi Sen & Marie-Theres von Schickfus, 2017. "Will Assets be Stranded or Bailed Out? Expectations of Investors in the Face of Climate Policy," ifo Working Paper Series 238, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Mark Schopf, 2016. "Unilateral Supply Side Policies and the Green Paradox," Working Papers Dissertations 28, Paderborn University, Faculty of Business Administration and Economics.
    4. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    5. Franziska Holz & Clemens Haftendorn & Roman Mendelevitch & Christian von Hirschhausen, 2016. "A Model of the International Steam Coal Market (COALMOD-World)," Data Documentation 85, DIW Berlin, German Institute for Economic Research.
    6. Kim Collins & Roman Mendelevitch, 2015. "Leaving Coal Unburned: Options for Demand-Side and Supply-Side Policies," DIW Roundup: Politik im Fokus 87, DIW Berlin, German Institute for Economic Research.

  9. Kim Collins & Roman Mendelevitch, 2015. "Leaving Coal Unburned: Options for Demand-Side and Supply-Side Policies," DIW Roundup: Politik im Fokus 87, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Fergus Green & Richard Denniss, 2018. "Cutting with both arms of the scissors: the economic and political case for restrictive supply-side climate policies," Climatic Change, Springer, vol. 150(1), pages 73-87, September.
    2. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.

  10. Roman Mendelevitch & Pao-Yu Oei, 2015. "The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)," Discussion Papers of DIW Berlin 1521, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.

  11. Mendelevitch, Roman & Richter, Phillip & Jotzo, Frank, 2015. "Market Power Rents and Climate Change Mitigation: A Rationale for Coal Export Taxes?," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112896, Verein für Socialpolitik / German Economic Association.

    Cited by:

    1. Michael Lazarus & Harro van Asselt, 2018. "Fossil fuel supply and climate policy: exploring the road less taken," Climatic Change, Springer, vol. 150(1), pages 1-13, September.
    2. Suphi Sen & Marie-Theres von Schickfus, 2017. "Will Assets be Stranded or Bailed Out? Expectations of Investors in the Face of Climate Policy," ifo Working Paper Series 238, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).

  12. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Christian von Hirschhausen & Claudia Kemfert & Friedrich Kunz & Roman Mendelevitch, 2013. "Europäische Stromerzeugung nach 2020: Beitrag erneuerbarer Energien nicht unterschätzen," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(29), pages 3-13.
    2. Sebastian Wehrle & Johannes Schmidt, 2016. "Optimal emission prices for a district heating system owner," Working Papers 642016, Institute for Sustainable Economic Development, Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, Vienna.
    3. Franziska Holz & Christian Von Hirschhausen, 2013. "The Infrastructure Implications Of The Energy Transformation In Europe Until 2050 — Lessons From The Emf28 Modeling Exercise," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
    4. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    5. Traber, Thure, 2017. "Capacity Remuneration Mechanisms for Reliability in the Integrated European Electricity Market: Effects on Welfare and Distribution through 2023," Utilities Policy, Elsevier, vol. 46(C), pages 1-14.
    6. A. Schröder & T. Traber & C. Kemfert, 2013. "Market Driven Power Plant Investment Perspectives In Europe: Climate Policy And Technology Scenarios Until 2050 In The Model Emelie-Esy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-22.
    7. Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019. "European electricity sector decarbonization under different levels of foresight," Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
    8. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    9. Hartner, Michael & Permoser, Andreas, 2018. "Through the valley: The impact of PV penetration levels on price volatility and resulting revenues for storage plants," Renewable Energy, Elsevier, vol. 115(C), pages 1184-1195.
    10. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    11. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    12. Barry, Michael & Baur, Patrick & Gaudard, Ludovic & Giuliani, Gianluca & Hediger, Werner & Romerio, Franco & Schillinger, Moritz & Schumann, René & Voegeli, Gillaume & Weigt, Hannes, 2015. "The Future of Swiss Hydropower A Review on Drivers and Uncertainties," Working papers 2015/11, Faculty of Business and Economics - University of Basel.
    13. Löffler, Konstantin & Hainsch, Karlo & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Von Hirschhausen, Christian, 2017. "Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS)," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 1-28.
    14. Hartner, Michael & Ortner, André & Hiesl, Albert & Haas, Reinhard, 2015. "East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective," Applied Energy, Elsevier, vol. 160(C), pages 94-107.
    15. Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.
    16. Jun Zhao & Bo Shen, 2019. "The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China," Energies, MDPI, Open Access Journal, vol. 12(12), pages 1-22, June.
    17. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    18. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    19. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    20. John Foster & Liam Wagner & Alexandra Bratanova, 2014. "LCOE models: A comparison of the theoretical frameworks and key assumptions," Energy Economics and Management Group Working Papers 4-2014, School of Economics, University of Queensland, Australia.
    21. Wolf-Peter Schill & Clemens Gerbaulet, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables?," Discussion Papers of DIW Berlin 1442, DIW Berlin, German Institute for Economic Research.
    22. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-25, May.
    23. Alexander Zerrahn & Wolf-Peter Schill, 2015. "A Greenfield Model to Evaluate Long-Run Power Storage Requirements for High Shares of Renewables," Discussion Papers of DIW Berlin 1457, DIW Berlin, German Institute for Economic Research.
    24. Paula Díaz & Oscar Van Vliet & Anthony Patt, 2017. "Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland," Energies, MDPI, Open Access Journal, vol. 10(7), pages 1-15, June.
    25. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    26. Tom Brijs & Arne van Stiphout & Sauleh Siddiqui & Ronnie Belmans, 2016. "Evaluating the Role of Electricity Storage by Considering Short-Term Operation in Long-Term Planning," Discussion Papers of DIW Berlin 1624, DIW Berlin, German Institute for Economic Research.
    27. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany: Data Documentation," Data Documentation 78, DIW Berlin, German Institute for Economic Research.
    28. Linus Lawrenz & Bobby Xiong & Luise Lorenz & Alexandra Krumm & Hans Hosenfeld & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei & Christian Von Hirschhausen, 2018. "Exploring Energy Pathways for the Low-Carbon Transformation in India—A Model-Based Analysis," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-23, November.
    29. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    30. Hörnlein, Lena, 2019. "The value of gas-fired power plants in markets with high shares of renewable energy," Energy Economics, Elsevier, vol. 81(C), pages 1078-1098.
    31. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    32. Jan Abrell and Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    33. Mathias Mier & Christoph Weissbart, 2019. "Power Markets in Transition: Decarbonization, Energy Efficiency, and Short-Term Demand Response," ifo Working Paper Series 284, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    34. Thakur, Jagruti & Rauner, Sebastian & Darghouth, Naïm R. & Chakraborty, Basab, 2018. "Exploring the impact of increased solar deployment levels on residential electricity bills in India," Renewable Energy, Elsevier, vol. 120(C), pages 512-523.
    35. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, Open Access Journal, vol. 10(12), pages 1-27, November.
    36. Zimmermann, Florian & Bublitz, Andreas & Keles, Dogan & Fichtner, Wolf, 2019. "Cross-border effects of capacity remuneration mechanisms: The Swiss case," Working Paper Series in Production and Energy 35, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    37. Pean, Emmanuel & Pirouti, Marouf & Qadrdan, Meysam, 2016. "Role of the GB-France electricity interconnectors in integration of variable renewable generation," Renewable Energy, Elsevier, vol. 99(C), pages 307-314.
    38. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    39. Weber, Juliane & Heinrichs, Heidi Ursula & Gillessen, Bastian & Schumann, Diana & Hörsch, Jonas & Brown, Tom & Witthaut, Dirk, 2019. "Counter-intuitive behaviour of energy system models under CO2 caps and prices," Energy, Elsevier, vol. 170(C), pages 22-30.
    40. Bratanova, Alexandra & Robinson, Jacqueline & Wagner, Liam, 2016. "New technology adoption for Russian energy generation: What does it cost? A case study for Moscow," Applied Energy, Elsevier, vol. 162(C), pages 924-939.
    41. Krasovskii, Andrey & Khabarov, Nikolay & Obersteiner, Michael, 2016. "Fair pricing of REDD-based emission offsets under risk preferences and benefit-sharing," Energy Policy, Elsevier, vol. 96(C), pages 193-205.
    42. Schäfer, Sebastian, 2019. "Decoupling the EU ETS from subsidized renewables and other demand side effects: lessons from the impact of the EU ETS on CO2 emissions in the German electricity sector," Energy Policy, Elsevier, vol. 133(C).
    43. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 65-79.
    44. Jörn C. Richstein & Casimir Lorenz & Karsten Neuhoff, 2018. "An Auction Story: How Simple Bids Struggle with Uncertainty," Discussion Papers of DIW Berlin 1765, DIW Berlin, German Institute for Economic Research.
    45. Sebastian Schaefer, 2018. "Decoupling the EU ETS from subsidized renewables and other demand side effects Lessons from the impact of the EU ETS on CO2 emissions in the German electricity sector," MAGKS Papers on Economics 201835, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    46. Thao Pham, 2016. "Energiewende and competition in Germany: Diagnosing market power in wholesale electricity market," Post-Print hal-02568253, HAL.
    47. Christian von Hirschhausen, 2017. "Nuclear Power in the Twenty-First Century: An Assessment (Part I)," Discussion Papers of DIW Berlin 1700, DIW Berlin, German Institute for Economic Research.
    48. Konstantin Löffler & Karlo Hainsch & Thorsten Burandt & Pao-Yu Oei & Claudia Kemfert & Christian von Hirschhausen, 2017. "Designing a Global Energy System Based on 100% Renewables for 2050: GENeSYS-MOD: An Application of the Open-Source Energy Modelling System (OSeMOSYS)," Discussion Papers of DIW Berlin 1678, DIW Berlin, German Institute for Economic Research.
    49. Hofmann, Mathias & Tsatsaronis, George, 2018. "Comparative exergoeconomic assessment of coal-fired power plants – Binary Rankine cycle versus conventional steam cycle," Energy, Elsevier, vol. 142(C), pages 168-179.
    50. Roman Mendelevitch & Pao-Yu Oei, 2015. "The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)," Discussion Papers of DIW Berlin 1521, DIW Berlin, German Institute for Economic Research.
    51. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    52. Jenniches, Simon, 2018. "Assessing the regional economic impacts of renewable energy sources – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 35-51.
    53. Casimir Lorenz & Clemens Gerbaulet, 2017. "Wind Providing Balancing Reserves: An Application to the German Electricity System of 2025," Discussion Papers of DIW Berlin 1655, DIW Berlin, German Institute for Economic Research.
    54. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    55. Jonas Egerer & Roman Mendelevitch & Christian von Hirschhausen, 2014. "A Lower Carbon Strategy for the Electricity Sector of Kazakhstan to 2030/50: Scenarios for Generation and Network Development ; Technical Report," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 85, number pbk85, January.
    56. Ahmad Murtaza Ershad & Robert Pietzcker & Falko Ueckerdt & Gunnar Luderer, 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040," Energies, MDPI, Open Access Journal, vol. 13(9), pages 1-19, May.
    57. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    58. Isabel Teichmann, 2014. "Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany," Discussion Papers of DIW Berlin 1406, DIW Berlin, German Institute for Economic Research.
    59. Petitet, Marie & Perrot, Marie & Mathieu, Sébastien & Ernst, Damien & Phulpin, Yannick, 2019. "Impact of gate closure time on the efficiency of power systems balancing," Energy Policy, Elsevier, vol. 129(C), pages 562-573.
    60. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    61. Sebastian Schaefer, 2018. "Reconciling Emissions Trading and the Promotion of Renewable Energy," MAGKS Papers on Economics 201836, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    62. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    63. Rečka, L. & Ščasný, M., 2016. "Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050," Energy, Elsevier, vol. 108(C), pages 19-33.
    64. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    65. Breyer, Christian & Koskinen, Otto & Blechinger, Philipp, 2015. "Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 610-628.
    66. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    67. Denholm, Paul & Brinkman, Greg & Mai, Trieu, 2018. "How low can you go? The importance of quantifying minimum generation levels for renewable integration," Energy Policy, Elsevier, vol. 115(C), pages 249-257.
    68. Richstein, Jörn C. & Lorenz, Casimir & Neuhoff, Karsten, 2020. "An auction story: How simple bids struggle with uncertainty," Energy Economics, Elsevier, vol. 89(C).
    69. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, Open Access Journal, vol. 12(1), pages 1-27, December.
    70. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, Open Access Journal, vol. 10(3), pages 1-37, March.
    71. Schlott, Markus & Kies, Alexander & Brown, Tom & Schramm, Stefan & Greiner, Martin, 2018. "The impact of climate change on a cost-optimal highly renewable European electricity network," Applied Energy, Elsevier, vol. 230(C), pages 1645-1659.
    72. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    73. Sebastian Schaefer, 2018. "Subsidizing Renewable Energy: Higher Welfare by lower depreciation costs for fossil power plants?," MAGKS Papers on Economics 201834, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    74. Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
    75. Thao Pham, 2015. "Energiewende and competition in Germany: Diagnosing market power in wholesale electricity market," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 29-49.
    76. von Hirschhausen, Christian, 2012. "Green electricity investment in Europe: Development scenarios for generation and transmission investments," EIB Working Papers 2012/04, European Investment Bank (EIB).
    77. Müller, C. & Hoffrichter, A. & Wyrwoll, L. & Schmitt, C. & Trageser, M. & Kulms, T. & Beulertz, D. & Metzger, M. & Duckheim, M. & Huber, M. & Küppers, M. & Most, D. & Paulus, S. & Heger, H.J. & Schnet, 2019. "Modeling framework for planning and operation of multi-modal energy systems in the case of Germany," Applied Energy, Elsevier, vol. 250(C), pages 1132-1146.
    78. Teirila, J., 2017. "Market Power in the Capacity Market? The Case of Ireland," Cambridge Working Papers in Economics 1727, Faculty of Economics, University of Cambridge.

  13. Roman Mendelevitch, 2013. "The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application," Discussion Papers of DIW Berlin 1308, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 171-194.
    2. Olivier Massol & Stéphane Tchung-Ming & Albert Banal-Estañol, 2015. "Joining the CCS Club ! The economics of CO2 pipeline projects," Post-Print hal-01208201, HAL.
    3. Roman Mendelevitch & Pao-Yu Oei, 2015. "The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)," Discussion Papers of DIW Berlin 1521, DIW Berlin, German Institute for Economic Research.

  14. Roman Mendelevitch & Johannes Herold & Pao-Yu Oei & Andreas Tissen, 2010. "CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe," Discussion Papers of DIW Berlin 1052, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Jeffrey M. Bielicki & Guillaume Calas & Richard S. Middleton & Minh Ha‐Duong, 2014. "National corridors for climate change mitigation: managing industrial CO 2 emissions in France," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 262-277, June.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    3. Mendelevitch, Roman, 2013. "The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79950, Verein für Socialpolitik / German Economic Association.
    4. Olivier Massol & Stéphane Tchung-Ming & Albert Banal-Estañol, 2015. "Joining the CCS Club ! The economics of CO2 pipeline projects," Post-Print hal-01208201, HAL.
    5. Stephan Spiecker & Volker Eickholt, 2013. "The Impact Of Carbon Capture And Storage On A Decarbonized German Power Market," EWL Working Papers 1304, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2013.
    6. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.
    7. Christian von Hirschhausen, 2011. "Infrastruktur für die Energiewende und die Systemtransformation – notwendig, aber kein Engpass für weitere Schritte," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(18), pages 14-20, October.
    8. Bertram, Christine & Heitmann, Nadine & Narita, Daiju & Schwedeler, Markus, 2012. "How will Germany's CCS policy affect the development of a European CO2 transport infrastructure?," Kiel Policy Brief 43, Kiel Institute for the World Economy (IfW).
    9. Massol, O. & Tchung-Ming, S., 2012. "Joining the CCS Club! Insights from a Northwest European CO2 Pipeline Project," Working Papers 12/10, Department of Economics, City University London.
    10. Spiecker, S. & Eickholt, V. & Weber, C., 2014. "The impact of carbon capture and storage on a decarbonized German power market," Energy Economics, Elsevier, vol. 43(C), pages 166-177.

Articles

  1. Pao-Yu Oei & Roman Mendelevitch, 2019. "Prospects for steam coal exporters in the era of climate policies: a case study of Colombia," Climate Policy, Taylor & Francis Journals, vol. 19(1), pages 73-91, January.

    Cited by:

    1. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.
    2. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," Energy Policy, Elsevier, vol. 144(C).
    3. Saget, Catherine & Vogt-Schilb, Adrien & Luu, Trang, 2020. "Jobs in a Net-Zero Emissions Future in Latin America and the Caribbean," EconStor Books, ZBW - Leibniz Information Centre for Economics, number 222572.
    4. Cardoso, Andrea & Turhan, Ethemcan, 2018. "Examining new geographies of coal: Dissenting energyscapes in Colombia and Turkey," Applied Energy, Elsevier, vol. 224(C), pages 398-408.
    5. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.

  2. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.
    See citations under working paper version above.
  3. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.

    Cited by:

    1. Yang, Zhifang & Zhong, Haiwang & Lin, Wei & Lin, Jeremy & Chen, Yonghong & Xia, Qing & Liu, Wentao & Zhang, Xuan, 2019. "Mapping between transmission constraint penalty factor and OPF solution in electricity markets: analysis and fast calculation," Energy, Elsevier, vol. 168(C), pages 1181-1191.
    2. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    3. Athanasios Dagoumas & Nikolaos Koltsaklis, 2020. "Zonal Pricing in Kazakhstan Power System with a Unit Commitment Model," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 24-36.

  4. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.

    Cited by:

    1. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.
    2. Philippe Le Billon & Berit Kristoffersen, 2020. "Just cuts for fossil fuels? Supply-side carbon constraints and energy transition," Environment and Planning A, , vol. 52(6), pages 1072-1092, September.
    3. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.
    4. Peszko,Grzegorz & Van Der Mensbrugghe,Dominique & Golub,Alexander Alexandrovich, 2020. "Diversification and Cooperation Strategies in a Decarbonizing World," Policy Research Working Paper Series 9315, The World Bank.

  5. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 171-194.

    Cited by:

    1. Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019. "European electricity sector decarbonization under different levels of foresight," Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    3. Marzena Kramarz & Katarzyna Dohn & Edyta Przybylska & Lilla Knop, 2020. "Scenarios for the Development of Multimodal Transport in the TRITIA Cross-Border Area," Sustainability, MDPI, Open Access Journal, vol. 12(17), pages 1-41, August.
    4. Ansari, Dawud & Holz, Franziska, 2019. "Anticipating global energy, climate and policy in 2055: Constructing qualitative and quantitative narratives," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 1-23.
    5. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," World Development, Elsevier, vol. 130(C).
    6. Richter, Philipp M. & Schiersch, Alexander, 2017. "CO2 emission intensity and exporting: Evidence from firm-level data," European Economic Review, Elsevier, vol. 98(C), pages 373-391.
    7. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    8. Hans-Karl Bartholdsen & Anna Eidens & Konstantin Löffler & Frederik Seehaus & Felix Wejda & Thorsten Burandt & Pao-Yu Oei & Claudia Kemfert & Christian von Hirschhausen, 2019. "Pathways for Germany’s Low-Carbon Energy Transformation Towards 2050," Energies, MDPI, Open Access Journal, vol. 12(15), pages 1-33, August.
    9. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.

  6. Christian von Hirschhausen & Claudia Kemfert & Friedrich Kunz & Roman Mendelevitch, 2013. "Europäische Stromerzeugung nach 2020: Beitrag erneuerbarer Energien nicht unterschätzen," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(29), pages 3-13.

    Cited by:

    1. Saskia Ellenbeck & Andreas Beneking & Andrzej Ceglarz & Peter Schmidt & Antonella Battaglini, 2015. "Security of Supply in European Electricity Markets—Determinants of Investment Decisions and the European Energy Union," Energies, MDPI, Open Access Journal, vol. 8(6), pages 1-19, June.
    2. Glachant, Jean-Michel & Ruester, Sophia, 2014. "The EU internal electricity market: Done forever?," Utilities Policy, Elsevier, vol. 30(C), pages 1-7.
    3. Jean-Michel Glachant & Sophia Ruester, 2013. "The EU Internal Electricity Market: Done Forever?," RSCAS Working Papers 2013/66, European University Institute.
    4. Saskia Ellenbeck & Peter Schmidt & Antonella Battaglini & Johan Lilliestam, 2013. "Der Strommarkt als soziale Institution: eine erweiterte Perspektive auf die deutsche Diskussion um Kapazitätsmechanismen," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 82(3), pages 171-182.
    5. Glachant, Jean-Michel & Ruester, Sophia, 2014. "The EU internal electricity market: Done forever?," Utilities Policy, Elsevier, vol. 31(C), pages 221-228.

  7. Christian von Hirschhausen & Claudia Kemfert & Friedrich Kunz & Roman Mendelevitch, 2013. "European Electricity Generation Post-2020: Renewable Energy Not To Be Underestimated," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 3(9), pages 16-28.

    Cited by:

    1. Claudia Kemfert & Dorothea Schäfer & Willi Semmler, 2020. "Great Green Transition and Finance," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 55(3), pages 181-186, May.

Books

  1. Jonas Egerer & Roman Mendelevitch & Christian von Hirschhausen, 2014. "A Lower Carbon Strategy for the Electricity Sector of Kazakhstan to 2030/50: Scenarios for Generation and Network Development ; Technical Report," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 85, number pbk85, January.

    Cited by:

    1. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.
    2. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    3. Makpal Assembayeva & Jonas Egerer & Roman Mendelevitch & Nurkhat Zhakiyev, 2017. "A Spatial Electricity Market Model for the Power System of Kazakhstan," Discussion Papers of DIW Berlin 1659, DIW Berlin, German Institute for Economic Research.
    4. Athanasios Dagoumas & Nikolaos Koltsaklis, 2020. "Zonal Pricing in Kazakhstan Power System with a Unit Commitment Model," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 24-36.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 18 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (18) 2010-09-18 2013-07-15 2013-07-28 2014-02-02 2015-05-02 2015-09-05 2015-12-01 2015-12-20 2016-02-17 2016-05-28 2016-07-02 2016-09-11 2016-11-06 2016-12-11 2017-04-30 2018-11-05 2019-01-21 2019-02-25. Author is listed
  2. NEP-ENV: Environmental Economics (12) 2010-09-18 2013-07-15 2014-02-02 2015-05-02 2015-09-05 2015-12-01 2015-12-20 2016-02-17 2016-09-11 2016-11-06 2016-12-11 2019-02-25. Author is listed
  3. NEP-REG: Regulation (5) 2013-07-28 2015-09-05 2015-12-20 2016-09-11 2018-11-05. Author is listed
  4. NEP-AGR: Agricultural Economics (4) 2015-05-02 2015-09-05 2015-12-20 2016-09-11
  5. NEP-CMP: Computational Economics (2) 2016-02-17 2016-12-11
  6. NEP-CIS: Confederation of Independent States (1) 2017-04-30
  7. NEP-CWA: Central & Western Asia (1) 2017-04-30
  8. NEP-EUR: Microeconomic European Issues (1) 2010-09-18
  9. NEP-INT: International Trade (1) 2019-02-25
  10. NEP-SEA: South East Asia (1) 2019-02-25
  11. NEP-TRA: Transition Economics (1) 2017-04-30
  12. NEP-TRE: Transport Economics (1) 2016-05-28
  13. NEP-URE: Urban & Real Estate Economics (1) 2016-05-28

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Roman Mendelevitch should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.