IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v132y2019icp1017-1033.html
   My bibliography  Save this article

Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems

Author

Listed:
  • Neetzow, Paul
  • Mendelevitch, Roman
  • Siddiqui, Sauleh

Abstract

Distributed photo-voltaic (PV) generation is one of the pillars of energy transitions around the world, but its deployment in the distribution grid requires costly reinforcements and expansions. Prosumage – consisting of a household-level PV unit coupled with a battery storage system – has been proposed as an effective means to facilitate the integration of renewable energy sources and reduce distribution grid stress. However, tapping its full potential requires regulatory interventions; otherwise, system costs could rise despite increasing flexibility. We analyze the effectiveness of different policy schemes to mitigate the need for distribution capacity expansion by incentivizing beneficial storage operation. Our novel top-down modeling approach allows analyzing effects on market prices, storage dispatch, induced distribution grid requirements, system costs, and distributional implications. Based on German power system data, numerical results indicate that distribution grid requirements can be reduced through simple feed-in policies. A uniform limit on maximum grid feed-in can leave distribution system operators better off, even if they fully compensate prosumage households for foregone revenue. Policies imposing more differentiated limits at the regional level result in only marginal efficiency improvements. Complete self-sufficiency (autarky) is socially undesirable, as it confines important balancing potential and can increase system costs despite adding storage.

Suggested Citation

  • Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
  • Handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:1017-1033
    DOI: 10.1016/j.enpol.2019.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519303945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Green and Iain Staffell, 2017. "Prosumage and the British Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Solano, J.C. & Brito, M.C. & Caamaño-Martín, E., 2018. "Impact of fixed charges on the viability of self-consumption photovoltaics," Energy Policy, Elsevier, vol. 122(C), pages 322-331.
    3. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Iain MacGill and Robert Smith, 2017. "Consumers or prosumers, customers or competitors? - Some Australian perspectives on possible energy users of the future," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    5. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    6. Ignacio J. Pérez-Arriaga, Jesse D. Jenkins, and Carlos Batlle, 2017. "A regulatory framework for an evolving electricity sector: Highlights of the MIT utility of the future study," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    7. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    8. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    9. Michael G. Pollitt, 2018. "Electricity Network Charging in the Presence of Distributed Energy Resources: Principles, Problems and Solutions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    10. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    11. Spiliotis, Konstantinos & Ramos Gutierrez, Ariana Isabel & Belmans, Ronnie, 2016. "Demand flexibility versus physical network expansions in distribution grids," Applied Energy, Elsevier, vol. 182(C), pages 613-624.
    12. Moshövel, Janina & Kairies, Kai-Philipp & Magnor, Dirk & Leuthold, Matthias & Bost, Mark & Gährs, Swantje & Szczechowicz, Eva & Cramer, Moritz & Sauer, Dirk Uwe, 2015. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Elsevier, vol. 137(C), pages 567-575.
    13. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
    14. Hinz, Fabian & Schmidt, Matthew & Möst, Dominik, 2018. "Regional distribution effects of different electricity network tariff designs with a distributed generation structure: The case of Germany," Energy Policy, Elsevier, vol. 113(C), pages 97-111.
    15. Neetzow, Paul & Pechan, Anna & Eisenack, Klaus, 2018. "Electricity storage and transmission: Complements or substitutes?," Energy Economics, Elsevier, vol. 76(C), pages 367-377.
    16. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    17. Sioshansi, Ramteen, 2014. "When energy storage reduces social welfare," Energy Economics, Elsevier, vol. 41(C), pages 106-116.
    18. López Prol, Javier & Steininger, Karl W., 2017. "Photovoltaic self-consumption regulation in Spain: Profitability analysis and alternative regulation schemes," Energy Policy, Elsevier, vol. 108(C), pages 742-754.
    19. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    20. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
    21. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    22. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    23. Faerber, Laura Antonia & Balta-Ozkan, Nazmiye & Connor, Peter M., 2018. "Innovative network pricing to support the transition to a smart grid in a low-carbon economy," Energy Policy, Elsevier, vol. 116(C), pages 210-219.
    24. Dietrich, Andreas & Weber, Christoph, 2018. "What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany," Energy Economics, Elsevier, vol. 74(C), pages 399-416.
    25. Friedrich Kunz & Mario Kendziorski & Wolf-Peter Schill & Jens Weibezahn & Jan Zepter & Christian von Hirschhausen & Philipp Hauser & Matthias Zech & Dominik Möst & Sina Heidari & Björn Felten & Christ, 2017. "Electricity, Heat and Gas Sector Data for Modelling the German System," Data Documentation 92, DIW Berlin, German Institute for Economic Research.
    26. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    27. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    28. Ramteen Sioshansi, 2010. "Welfare Impacts of Electricity Storage and the Implications of Ownership Structure," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 173-198.
    29. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    30. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    31. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    32. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    33. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    34. Kubli, Merla, 2018. "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, Elsevier, vol. 114(C), pages 173-188.
    35. Pudjianto, Danny & Djapic, Predrag & Aunedi, Marko & Gan, Chin Kim & Strbac, Goran & Huang, Sikai & Infield, David, 2013. "Smart control for minimizing distribution network reinforcement cost due to electrification," Energy Policy, Elsevier, vol. 52(C), pages 76-84.
    36. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    37. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    38. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    2. Say, Kelvin & John, Michele, 2021. "Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs," Energy Policy, Elsevier, vol. 152(C).
    3. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    5. Luca Casamassima & Luigi Bottecchia & Axel Bruck & Lukas Kranzl & Reinhard Haas, 2022. "Economic, social, and environmental aspects of Positive Energy Districts—A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    6. Steinhäuser, J. Micha & Eisenack, Klaus, 2020. "How market design shapes the spatial distribution of power plant curtailment costs," Energy Policy, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    2. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    3. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    4. Neetzow, Paul & Pechan, Anna & Eisenack, Klaus, 2018. "Electricity storage and transmission: Complements or substitutes?," Energy Economics, Elsevier, vol. 76(C), pages 367-377.
    5. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    6. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    7. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).
    8. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    9. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    10. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    11. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    12. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    13. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    14. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    15. Debia, Sébastien & Pineau, Pierre-Olivier & Siddiqui, Afzal S., 2021. "Strategic storage use in a hydro-thermal power system with carbon constraints," Energy Economics, Elsevier, vol. 98(C).
    16. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    17. Shan, Rui & Abdulla, Ahmed & Li, Mingquan, 2021. "Deleterious effects of strategic, profit-seeking energy storage operation on electric power system costs," Applied Energy, Elsevier, vol. 292(C).
    18. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    19. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    20. Farzad Hassanzadeh Moghimi & Yihsu Chen & Afzal S. Siddiqui, 2023. "Flexible supply meets flexible demand: prosumer impact on strategic hydro operations," Computational Management Science, Springer, vol. 20(1), pages 1-35, December.

    More about this item

    Keywords

    Residential storage; Renewable integration; Distribution system operator; Prosumage; Policy; Multi-level games; MPEC;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:1017-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.