IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v198y2025ics0301421524004816.html
   My bibliography  Save this article

Counteracting the duck curve: Prosumage with time-varying import and export electricity tariffs

Author

Listed:
  • Restel, Lisa
  • Say, Kelvin

Abstract

Australia is a frontrunner in household solar photovoltaic (PV) adoption, which has helped to accelerate the energy transition but has changed demand such that the power system faces operational challenges, known as the solar ‘duck curve’. The growing adoption of household batteries will change demand once again and policymakers have the means to reshape this demand through time-varying tariffs. This study evaluates the impact of time-varying import and export tariffs on household load profiles using data from 400 Melbourne households, each equipped with a 9 kWPPV and 12 kWh battery, and a dispatch optimisation model.

Suggested Citation

  • Restel, Lisa & Say, Kelvin, 2025. "Counteracting the duck curve: Prosumage with time-varying import and export electricity tariffs," Energy Policy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421524004816
    DOI: 10.1016/j.enpol.2024.114461
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524004816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Covington, Hannah & Woo-Shem, Brian & Wang, Chenli & Roth, Thomas & Nguyen, Cuong & Liu, Yuhong & Fang, Yi & Lee, Hohyun, 2024. "Method for evaluating fairness of electricity tariffs with regard to income level of residential buildings," Applied Energy, Elsevier, vol. 353(PB).
    2. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    3. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    4. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    5. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    6. Han, Yang & Lam, Jacqueline C.K. & Li, Victor O.K. & Newbery, David & Guo, Peiyang & Chan, Kelvin, 2024. "A deep learning approach for fairness-based time of use tariff design," Energy Policy, Elsevier, vol. 192(C).
    7. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    8. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    9. Muttaqee, Mahmood & Stelmach, Greg & Zanocco, Chad & Flora, June & Rajagopal, Ram & Boudet, Hilary S., 2024. "Time of use pricing and likelihood of shifting energy activities, strategies, and timing," Energy Policy, Elsevier, vol. 187(C).
    10. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    11. Burns, Kelly & Mountain, Bruce, 2021. "Do households respond to Time-Of-Use tariffs? Evidence from Australia," Energy Economics, Elsevier, vol. 95(C).
    12. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    13. Klein, Martin & Ziade, Ahmad & de Vries, Laurens, 2019. "Aligning prosumers with the electricity wholesale market – The impact of time-varying price signals and fixed network charges on solar self-consumption," Energy Policy, Elsevier, vol. 134(C).
    14. Lanot, Gauthier & Vesterberg, Mattias, 2021. "The price elasticity of electricity demand when marginal incentives are very large," Energy Economics, Elsevier, vol. 104(C).
    15. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    16. Say, Kelvin & John, Michele, 2021. "Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs," Energy Policy, Elsevier, vol. 152(C).
    17. Damian Shaw-Williams & Connie Susilawati & Geoffrey Walker, 2018. "Value of Residential Investment in Photovoltaics and Batteries in Networks: A Techno-Economic Analysis," Energies, MDPI, vol. 11(4), pages 1-25, April.
    18. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).
    2. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    3. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    4. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    5. Semmelmann, Leo & Konermann, Marie & Dietze, Daniel & Staudt, Philipp, 2024. "Empirical field evaluation of self-consumption promoting regulation of household battery energy storage systems," Energy Policy, Elsevier, vol. 194(C).
    6. Tham, Pham Ngoc & Thuy, Truong Dang & Nam, Pham Khanh & Papyrakis, Elissaios, 2025. "Policy uncertainty, public perception, and the preferences for rooftop solar power systems: A choice experiment study in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    7. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    8. Benalcazar, Pablo & Kalka, Maciej & Kamiński, Jacek, 2024. "From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems," Energy Policy, Elsevier, vol. 191(C).
    9. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    10. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    11. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    12. Hofmann, Matthias & Bjarghov, Sigurd & Sæle, Hanne & Lindberg, Karen Byskov, 2025. "Grid tariff design and peak demand shaving: A comparative tariff analysis with simulated demand response," Energy Policy, Elsevier, vol. 198(C).
    13. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    14. Lu, Yucun & Gorrasi, Chiara & Meus, Jelle & Bruninx, Kenneth & Delarue, Erik, 2024. "System-wide benefits of temporal alignment of wholesale–retail electricity prices," Applied Energy, Elsevier, vol. 373(C).
    15. Parra, David & Mauger, Romain, 2022. "A new dawn for energy storage: An interdisciplinary legal and techno-economic analysis of the new EU legal framework," Energy Policy, Elsevier, vol. 171(C).
    16. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    17. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    18. Seyedfarzad Sarfarazi & Marc Deissenroth-Uhrig & Valentin Bertsch, 2020. "Aggregation of Households in Community Energy Systems: An Analysis from Actors’ and Market Perspectives," Energies, MDPI, vol. 13(19), pages 1-37, October.
    19. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    20. Ayat-allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Energies, MDPI, vol. 14(15), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421524004816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.