IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519305646.html
   My bibliography  Save this article

Power to the people: Evolutionary market pressures from residential PV battery investments in Australia

Author

Listed:
  • Say, Kelvin
  • John, Michele
  • Dargaville, Roger

Abstract

Falling costs of solar PV and battery technologies are continuously changing the customer relationship with their electricity network. By managing their own self-generation, customers are able to place natural selection pressure on utilities to evolve. The devised techno-economic simulation model projects residential PV and battery investment decisions over 20 years in Perth, Australia to quantify the potential market impacts from policy and customer investment conditions. Using real-world demand and insolation profiles from 261 households, this research evaluates how cumulative customer PV and battery investments changes the network and market operating conditions, while under the influence of various feed-in tariff values. The results indicate that high feed-in tariff policy costs in the short-term, make it economically challenging to prevent or restrain significant residential PV-battery adoption in the longer-term. Moreover, continuous increases in residential PV-battery system installations eventually lead to annual net-exports substantially exceeding net-imports on the distribution network. This significant shift in network operation provides an opportunity for policymakers to utilise behind-the-meter PV-battery investments and decentralised energy markets to meet wider renewable energy and decarbonisation goals.

Suggested Citation

  • Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305646
    DOI: 10.1016/j.enpol.2019.110977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 80(C), pages 133-144.
    2. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    4. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    5. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    6. Pearce, Phoebe & Slade, Raphael, 2018. "Feed-in tariffs for solar microgeneration: Policy evaluation and capacity projections using a realistic agent-based model," Energy Policy, Elsevier, vol. 116(C), pages 95-111.
    7. Khalilpour, Rajab & Vassallo, Anthony, 2015. "Leaving the grid: An ambition or a real choice?," Energy Policy, Elsevier, vol. 82(C), pages 207-221.
    8. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    9. Rebecca Cassells & Alan S Duncan & Yashar Tarverdi, 2017. "Power to the people: WA's energy future," Bankwest Curtin Economics Centre Report series FI02, Bankwest Curtin Economics Centre (BCEC), Curtin Business School.
    10. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    11. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    12. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    13. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Regulatory and ratemaking approaches to mitigate financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 85(C), pages 115-125.
    14. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    15. Passey, Robert & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2017. "Designing more cost reflective electricity network tariffs with demand charges," Energy Policy, Elsevier, vol. 109(C), pages 642-649.
    16. López Prol, Javier, 2018. "Regulation, profitability and diffusion of photovoltaic grid-connected systems: A comparative analysis of Germany and Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1170-1181.
    17. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    18. Tim Nelson & Paul Simshauser & Simon Kelley, 2011. "Australian Residential Solar Feed-in Tariffs: Industry Stimulus or Regressive Form of Taxation?," Economic Analysis and Policy, Elsevier, vol. 41(2), pages 113-129, September.
    19. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    20. Lisa Schlesewsky & Simon Winter, 2018. "Inequalities in Energy Transition: The Case of Network Charges in Germany," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 102-113.
    21. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
    22. Sommerfeld, Jeff & Buys, Laurie & Mengersen, Kerrie & Vine, Desley, 2017. "Influence of demographic variables on uptake of domestic solar photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 315-323.
    23. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    24. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    25. Ayompe, L.M. & Duffy, A., 2013. "Feed-in tariff design for domestic scale grid-connected PV systems using high resolution household electricity demand data," Energy Policy, Elsevier, vol. 61(C), pages 619-627.
    26. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    27. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    28. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    29. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    30. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
    31. Damian Shaw-Williams & Connie Susilawati & Geoffrey Walker, 2018. "Value of Residential Investment in Photovoltaics and Batteries in Networks: A Techno-Economic Analysis," Energies, MDPI, vol. 11(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fett, Daniel & Fraunholz, Christoph & Keles, Dogan, 2021. "Diffusion and system impact of residential battery storage under different regulatory settings," Energy Policy, Elsevier, vol. 158(C).
    2. Say, Kelvin & John, Michele, 2021. "Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs," Energy Policy, Elsevier, vol. 152(C).
    3. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    4. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Antonio Ocana-Miguel & Jose R. Andres-Diaz & Enrique Navarrete-de Galvez & Alfonso Gago-Calderon, 2021. "Adaptation of an Insulated Centralized Photovoltaic Outdoor Lighting Installation with Electronic Control System to Improve Service Guarantee in Tropical Latitudes," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    6. Jonathan Doh & Pawan Budhwar & Geoffrey Wood, 2021. "Long-term energy transitions and international business: Concepts, theory, methods, and a research agenda," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(5), pages 951-970, July.
    7. Rezaeimozafar, Mostafa & Monaghan, Rory F.D. & Barrett, Enda & Duffy, Maeve, 2022. "A review of behind-the-meter energy storage systems in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    9. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    10. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    2. Say, Kelvin & John, Michele, 2021. "Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs," Energy Policy, Elsevier, vol. 152(C).
    3. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    4. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    5. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).
    6. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    7. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    8. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    9. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    10. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    11. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    12. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    13. Saumweber, Andrea & Wederhake, Lars & Cardoso, Gonçalo & Fridgen, Gilbert & Heleno, Miguel, 2021. "Designing Pareto optimal electricity retail rates when utility customers are prosumers," Energy Policy, Elsevier, vol. 156(C).
    14. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    15. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    16. Mittal, Anuj & Krejci, Caroline C. & Dorneich, Michael C., 2019. "An agent-based approach to designing residential renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1008-1020.
    17. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    18. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    19. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    20. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.