IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1521.html
   My bibliography  Save this paper

The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)

Author

Listed:
  • Roman Mendelevitch
  • Pao-Yu Oei

Abstract

This paper presents a general electricity-CO2 (ELCO) modeling framework that is able to simulate interactions of the energy-only market with different forms for national policy measures. We set up a two sector model where players can invest into various types of generation technologies including renewables, nuclear and Carbon Capture, Transport, and Storage (CCTS). For a detailed representation of CCTS we also include industry players (iron and steel as well as cement), and CO2 transport and CO2 storage including the option for CO2 enhanced oil recovery (CO2-EOR). The players maximize their expected profits based on variable, fixed and investment costs as well as the price of electricity, CO2 abatement cost and other incentives, subject to technical and environmental constraints. Demand is inelastic and represented via a selection of type hours. The model framework allows for regional disaggregation and features simplified electricity and CO2 pipeline networks. The model is balanced via a market clearing for the electricity as well as CO2 market. The equilibrium solution is subject to constraints on CO2 emissions and renewable generation share. We apply the model to a case study of the UK Electricity Market Reform to illustrate the mechanisms and potential results attained from the model.

Suggested Citation

  • Roman Mendelevitch & Pao-Yu Oei, 2015. "The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)," Discussion Papers of DIW Berlin 1521, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1521
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.520532.de/dp1521.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Mendelevitch, 2013. "The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application," Discussion Papers of DIW Berlin 1308, DIW Berlin, German Institute for Economic Research.
    2. Gürkan, Gül & Langestraat, Romeo, 2014. "Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market," Energy Policy, Elsevier, vol. 70(C), pages 85-95.
    3. Andreas Ehrenmann & Yves Smeers, 2011. "Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis," Operations Research, INFORMS, vol. 59(6), pages 1332-1346, December.
    4. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    5. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    6. Gough, Clair & O׳Keefe, Laura & Mander, Sarah, 2014. "Public perceptions of CO2 transportation in pipelines," Energy Policy, Elsevier, vol. 70(C), pages 106-114.
    7. Hu, Jing & Crijns-Graus, Wina & Lam, Long & Gilbert, Alyssa, 2015. "Ex-ante evaluation of EU ETS during 2013–2030: EU-internal abatement," Energy Policy, Elsevier, vol. 77(C), pages 152-163.
    8. Middleton, Richard S. & Eccles, Jordan K., 2013. "The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power," Applied Energy, Elsevier, vol. 108(C), pages 66-73.
    9. Černoch, Filip & Zapletalová, Veronika, 2015. "Hinkley point C: A new chance for nuclear power plant construction in central Europe?," Energy Policy, Elsevier, vol. 83(C), pages 165-168.
    10. Eide, Jan & de Sisternes, Fernando J. & Herzog, Howard J. & Webster, Mort D., 2014. "CO2 emission standards and investment in carbon capture," Energy Economics, Elsevier, vol. 45(C), pages 53-65.
    11. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    12. Yihsu Chen & Lizhi Wang, 2013. "Renewable Portfolio Standards in the Presence of Green Consumers and Emissions Trading," Networks and Spatial Economics, Springer, vol. 13(2), pages 149-181, June.
    13. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    14. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    15. Milligan, Ben, 2014. "Planning for offshore CO2 storage: Law and policy in the United Kingdom," Marine Policy, Elsevier, vol. 48(C), pages 162-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pao-Yu Oei and Roman Mendelevitch, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    2. Makpal Assembayeva & Jonas Egerer & Roman Mendelevitch & Nurkhat Zhakiyev, 2017. "A Spatial Electricity Market Model for the Power System of Kazakhstan," Discussion Papers of DIW Berlin 1659, DIW Berlin, German Institute for Economic Research.
    3. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Fraunholz, Christoph & Miskiw, Kim K. & Kraft, Emil & Fichtner, Wolf & Weber, Christoph, 2021. "On the role of risk aversion and market design in capacity expansion planning," Working Paper Series in Production and Energy 62, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    7. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    8. Tao, Zhenmin & Moncada, Jorge Andres & Delarue, Erik, 2023. "Exploring the impact of boundedly rational power plant investment decision-making by applying prospect theory," Utilities Policy, Elsevier, vol. 82(C).
    9. Thomas Mobius & Iegor Riepin & Felix Musgens & Adriaan H. van der Weijde, 2021. "Risk aversion in flexible electricity markets," Papers 2110.04088, arXiv.org.
    10. Henrik C. Bylling & Salvador Pineda & Trine K. Boomsma, 2020. "The impact of short-term variability and uncertainty on long-term power planning," Annals of Operations Research, Springer, vol. 284(1), pages 199-223, January.
    11. Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
    12. Tanaka, Makoto & Chen, Yihsu, 2013. "Market power in renewable portfolio standards," Energy Economics, Elsevier, vol. 39(C), pages 187-196.
    13. Elizondo Azuela, Gabriela & Barroso, Luiz & Khanna, Ashish & Wang, Xiaodong & Wu, Yun & Cunha, Gabriel, 2014. "Performance of renewable energy auctions : experience in Brazil, China and India," Policy Research Working Paper Series 7062, The World Bank.
    14. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    15. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    16. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    17. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    18. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    19. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    20. Bucksteeg, Michael & Voswinkel, Simon & Blumberg, Gerald, 2023. "Improving flow-based market coupling by integrating redispatch potential - Evidence from a large-scale model," EconStor Preprints 270878, ZBW - Leibniz Information Centre for Economics.

    More about this item

    Keywords

    Energy policy; electricity; CO2; CCS; UK; EOR; modeling;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.