IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v17y2012i6p669-686.html
   My bibliography  Save this article

Embedding CCS infrastructure into the European electricity system: a policy coordination problem

Author

Listed:
  • Nadine Heitmann
  • Christine Bertram
  • Daiju Narita

    ()

Abstract

Carbon dioxide capture and storage (CCS) has recently been receiving increasing recognition in policy debates. Various aspects of possible regulatory frameworks for its implementation are beginning to be discussed in Europe. One of the issues associated with the wide use of CCS is that it requires the establishment of a carbon dioxide (CO2) transport network, which could result in the spatial restructuring of power generation and transmission systems. This poses a significant coordination problem necessitating public planning and regulation. This paper reviews the recent literature on energy system modeling pertaining to the problem of installing CCS-related infrastructure throughout Europe and also discusses the policy issues that need to be addressed for a potential wide implementation of CCS in the next decades.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
  • Handle: RePEc:spr:masfgc:v:17:y:2012:i:6:p:669-686
    DOI: 10.1007/s11027-012-9360-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-012-9360-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giovanni, Emily & Richards, Kenneth R., 2010. "Determinants of the costs of carbon capture and sequestration for expanding electricity generation capacity," Energy Policy, Elsevier, vol. 38(10), pages 6026-6035, October.
    2. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    3. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    4. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
    5. Klaus S. Lackner & Jeffrey D. Sachs, 2005. "A Robust Strategy for Sustainable Energy," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 36(2), pages 215-284.
    6. Capros, Pantelis & Mantzos, Leonidas & Parousos, Leonidas & Tasios, Nikolaos & Klaassen, Ger & Van Ierland, Tom, 2011. "Analysis of the EU policy package on climate change and renewables," Energy Policy, Elsevier, vol. 39(3), pages 1476-1485, March.
    7. Newcomer, Adam & Apt, Jay, 2008. "Implications of generator siting for CO2 pipeline infrastructure," Energy Policy, Elsevier, vol. 36(5), pages 1776-1787, May.
    8. Odenberger, M. & Unger, T. & Johnsson, F., 2009. "Pathways for the North European electricity supply," Energy Policy, Elsevier, vol. 37(5), pages 1660-1677, May.
    9. Böhringer, Christoph & Rutherford, Thomas F. & Tol, Richard S. J., 2009. "The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment," Papers WP325, Economic and Social Research Institute (ESRI).
    10. Laurent Gilotte & Valentina Bosetti, 2007. "The impact of carbon capture and storage on overall mitigation policy," Climate Policy, Taylor & Francis Journals, vol. 7(1), pages 3-12, January.
    11. Fischedick, Manfred & Esken, Andrea & Luhmann, Hans-Jochen & Schüwer, Dietmar & Supersberger, Nikolaus, 2007. "Geologische CO2-Speicherung als klimapolitische Handlungsoption: Technologien, Konzepte, Perspektiven," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 35, number 35.
    12. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    13. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jeners:v:11:y:2018:i:9:p:2319-:d:167442 is not listed on IDEAS
    2. Niko Jaakkola, 2013. "Monopolistic Sequestration of European Carbon Emissions," OxCarre Working Papers 098, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    3. Scott, Vivian, 2013. "What can we expect from Europe's carbon capture and storage demonstrations?," Energy Policy, Elsevier, vol. 54(C), pages 66-71.

    More about this item

    Keywords

    CCS (carbon dioxide capture and storage); The European Union; Climate policy; Energy system models; Cost effectiveness; Carbon dioxide pipelines; Spatial optimization;

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:17:y:2012:i:6:p:669-686. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.