IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i7p3652-3667.html
   My bibliography  Save this article

A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf

Author

Listed:
  • Kemp, Alexander G.
  • Sola Kasim, A.

Abstract

The owners of 8 power plants in the UK have announced interest in capturing and sequestering CO2. Using various criteria from the literature twenty fields in the UK Continental Shelf were selected as possible sinks for the captured CO2. Using a linear programming model, the study determined the least-cost transportation network under various constraints on the volumes of CO2 captured from the sources and the injection rates at the sinks. Four scenarios were developed to gauge the sensitivity of the results to these and to the availability of fields for EOR and Permanent Storage. Depending on the scenario, the optimal transportation CAPEX was found to range between £3.5 and £5.2 billion in real terms. With higher minimum injection rates at the fields, accelerating CO2-EOR investments was found to reduce unit transportation CAPEX compared to waiting for their cessation of production dates. On the other hand a combination of the later availability of the CO2-EOR fields plus a lower minimum injection rate yielded the minimum transportation network CAPEX. The modelling also unveiled the problem of CO2 supply overflows in the longer term. The modelling approach has wide applicability beyond the UK.

Suggested Citation

  • Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3652-3667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00123-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:cdl:itsdav:qt46x6h0n0 is not listed on IDEAS
    2. A.G. Kemp and A.S. Kasim, 2008. "A Least-Cost optimisation Model of Co2 Capture Applied to Major uK Power Plants Within The Eu-ETS Framework," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 99-134.
    3. repec:cdl:itsdav:qt96z5s545 is not listed on IDEAS
    4. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    5. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
    6. repec:cdl:itsdav:qt1f25b3xq is not listed on IDEAS
    7. repec:cdl:itsdav:qt3zz2w2wr is not listed on IDEAS
    8. repec:cdl:itsdav:qt4xn4w7rn is not listed on IDEAS
    9. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    3. Singham, D.I., 2019. "Sample average approximation for the continuous type principal-agent problem," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1050-1057.
    4. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    5. Cai, W. & Singham, D.I., 2018. "A principal–agent problem with heterogeneous demand distributions for a carbon capture and storage system," European Journal of Operational Research, Elsevier, vol. 264(1), pages 239-256.
    6. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    7. Cai, W. & Singham, D.I. & Craparo, E.M. & White, J.A., 2014. "Pricing Contracts Under Uncertainty in a Carbon Capture and Storage Framework," Energy Economics, Elsevier, vol. 43(C), pages 56-62.
    8. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    9. Massol, O. & Tchung-Ming, S., 2012. "Joining the CCS Club! Insights from a Northwest European CO2 Pipeline Project," Working Papers 12/10, Department of Economics, City St George's, University of London.
    10. Kemp, Alexander G. & Kasim, Sola, 2010. "An Optimised Illustrative Investment Model Of The Economics Of Integrated Returns From CCS Deployment In The UK/UKCS," SIRE Discussion Papers 2010-126, Scottish Institute for Research in Economics (SIRE).
    11. Simon Shackley & Michael Thompson, 2012. "Lost in the mix: will the technologies of carbon dioxide capture and storage provide us with a breathing space as we strive to make the transition from fossil fuels to renewables?," Climatic Change, Springer, vol. 110(1), pages 101-121, January.
    12. Bertram, Christine & Heitmann, Nadine & Narita, Daiju & Schwedeler, Markus, 2012. "How will Germany's CCS policy affect the development of a European CO₂ transport infrastructure?," Kiel Policy Brief 43, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Massol & Stéphane Tchung-Ming, 2012. "Joining the CCS Club ! Insights from a Northwest European CO2 pipeline project," Working Papers hal-03206457, HAL.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    3. Tapia, John Frederick D. & Lee, Jui-Yuan & Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations," Applied Energy, Elsevier, vol. 184(C), pages 337-345.
    4. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    5. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    6. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    7. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO₂ Infrastructure Investment until 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 171-194.
    8. Jeffrey M. Bielicki & Guillaume Calas & Richard S. Middleton & Minh Ha‐Duong, 2014. "National corridors for climate change mitigation: managing industrial CO 2 emissions in France," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 262-277, June.
    9. Christian Leßmann & Arne Steinkraus, 2016. "Kurz zum Klima: »Carbon Capture and Storage« – was kostet die Emissionsvermeidung?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(05), pages 51-54, March.
    10. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    11. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    12. Stewart Russell & Nils Markusson & Vivian Scott, 2012. "What will CCS demonstrations demonstrate?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 651-668, August.
    13. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    14. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    15. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    16. Sun, Liang & Chen, Wenying, 2013. "The improved ChinaCCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China," Applied Energy, Elsevier, vol. 112(C), pages 793-799.
    17. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    18. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    19. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    20. Kemp, Alexander G. & Kasim, Sola, 2010. "An Optimised Illustrative Investment Model Of The Economics Of Integrated Returns From CCS Deployment In The UK/UKCS," SIRE Discussion Papers 2010-126, Scottish Institute for Research in Economics (SIRE).

    More about this item

    Keywords

    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3652-3667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.