IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v71y2014icp118-129.html
   My bibliography  Save this article

Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions

Author

Listed:
  • Barelli, L.
  • Ottaviano, A.

Abstract

Nowadays the control of greenhouse gas is probably the most challenging environmental policy issue. Since CO2 is considered the major greenhouse gas (GHG) that contributes to the global warming, enforcing technological strategies aiming to avoid or reuse CO2 emissions becomes crucial, in order to mitigate GHG environmental impact. Currently, solutions conventionally adopted to this purpose are carbon capture and storage (CCS) technologies.

Suggested Citation

  • Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
  • Handle: RePEc:eee:energy:v:71:y:2014:i:c:p:118-129
    DOI: 10.1016/j.energy.2014.04.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214004836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parikh, Jyoti & Parikh, Kirit, 2011. "India’s energy needs and low carbon options," Energy, Elsevier, vol. 36(6), pages 3650-3658.
    2. Zhou, Chunguang & Zhang, Lan & Swiderski, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2011. "Study and development of a high temperature process of multi-reformation of CH4 with CO2 for remediation of greenhouse gas," Energy, Elsevier, vol. 36(9), pages 5450-5459.
    3. Calise, F. & Dentice d’Accadia, M. & Palombo, A. & Vanoli, L., 2006. "Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System," Energy, Elsevier, vol. 31(15), pages 3278-3299.
    4. Barelli, L. & Bidini, G. & Corradetti, A. & Desideri, U., 2007. "Production of hydrogen through the carbonation–calcination reaction applied to CH4/CO2 mixtures," Energy, Elsevier, vol. 32(5), pages 834-843.
    5. Akkaya, Ali Volkan & Sahin, Bahri & Erdem, Hasan Huseyin, 2009. "Thermodynamic model for exergetic performance of a tubular SOFC module," Renewable Energy, Elsevier, vol. 34(7), pages 1863-1870.
    6. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    7. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    8. Barelli, L. & Bidini, G. & Corradetti, A. & Desideri, U., 2007. "Study of the carbonation–calcination reaction applied to the hydrogen production from syngas," Energy, Elsevier, vol. 32(5), pages 697-710.
    9. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    10. Liszka, Marcin & Malik, Tomasz & Budnik, Michał & Ziębik, Andrzej, 2013. "Comparison of IGCC (integrated gasification combined cycle) and CFB (circulating fluidized bed) cogeneration plants equipped with CO2 removal," Energy, Elsevier, vol. 58(C), pages 86-96.
    11. Jin, Hongguang & Gao, Lin & Han, Wei & Hong, Hui, 2010. "Prospect options of CO2 capture technology suitable for China," Energy, Elsevier, vol. 35(11), pages 4499-4506.
    12. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    13. Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
    14. Page, S.C. & Williamson, A.G. & Mason, I.G., 2009. "Carbon capture and storage: Fundamental thermodynamics and current technology," Energy Policy, Elsevier, vol. 37(9), pages 3314-3324, September.
    15. Barelli, L. & Bidini, G. & Gallorini, F. & Servili, S., 2008. "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review," Energy, Elsevier, vol. 33(4), pages 554-570.
    16. Rokni, Masoud, 2010. "Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle," Energy, Elsevier, vol. 35(12), pages 4691-4699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amedi, Hamid Reza & Bazooyar, Bahamin & Pishvaie, Mahmoud Reza, 2015. "Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell," Energy, Elsevier, vol. 90(P1), pages 605-621.
    2. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    3. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    4. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    5. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
    6. Mehran, Muhammad Taqi & Lim, Tak-Hyoung & Lee, Seung-Bok & Lee, Jong-Won & Park, Seok-Ju & Song, Rak-Hyun, 2016. "Long-term performance degradation study of solid oxide carbon fuel cells integrated with a steam gasifier," Energy, Elsevier, vol. 113(C), pages 1051-1061.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    4. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    5. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    6. Barelli, L. & Bidini, G. & Gallorini, F., 2015. "SE-SR with sorbents based on calcium aluminates: Process optimization," Applied Energy, Elsevier, vol. 143(C), pages 110-118.
    7. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    8. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    9. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    10. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    11. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    12. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    13. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    14. Masoud Rokni, 2016. "Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells," Energies, MDPI, vol. 9(6), pages 1-22, May.
    15. Denver F. Cheddie, 2010. "Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant," Energies, MDPI, vol. 3(4), pages 1-16, April.
    16. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    17. Steinkraus, Arne, 2015. "Coal and Gas - From Cradle to Grave with Carbon Capture and Storage," Economics Department Working Paper Series 14, Technische Universität Braunschweig, Economics Department.
    18. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    19. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    20. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:71:y:2014:i:c:p:118-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.