IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v55y2013icp683-689.html
   My bibliography  Save this article

Ten times more difficult: Quantifying the carbon capture and storage challenge

Author

Listed:
  • Nykvist, Björn

Abstract

Carbon Capture and Storage (CCS) is receiving much attention and is being promoted as an important low-carbon technology. This paper communicates key insights and conclusions from a larger study that conducted review work, policy analysis, and interviews with actors in the global CCS community (Varnäs et al., 2012). No judgment is made of the desirability of choosing CCS as a low carbon technology option, but if this technology is indeed pursued, four challenges are found to be 10 times greater than often recognized. These are; (i) a tenfold up-scaling in size (MW) from pilot plants to that of commercial demonstration, (ii) a tenfold increase in number of large scale demonstration plants actually being constructed, (iii) a tenfold increase in available annual funding over the coming 40 years and, (iv) a tenfold increase in the price put on carbon dioxide emissions. It is clear that the current development path will not fulfil expectations of CCS being commercially available at the end of this decade, nor will CCS be widely applied in time for significant contributions to needed CO2 emission reductions. CCS will only be developed if policymakers continue to favour coal based power generation while simultaneously developing stringent climate policy.

Suggested Citation

  • Nykvist, Björn, 2013. "Ten times more difficult: Quantifying the carbon capture and storage challenge," Energy Policy, Elsevier, vol. 55(C), pages 683-689.
  • Handle: RePEc:eee:enepol:v:55:y:2013:i:c:p:683-689
    DOI: 10.1016/j.enpol.2012.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512010713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Alphen, Klaas & Noothout, Paul M. & Hekkert, Marko P. & Turkenburg, Wim C., 2010. "Evaluating the development of carbon capture and storage technologies in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 971-986, April.
    2. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    3. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    4. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    5. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    6. Stephens, Jennie C. & Jiusto, Scott, 2010. "Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA," Energy Policy, Elsevier, vol. 38(4), pages 2020-2031, April.
    7. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Håkon Endresen Normann, 2016. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Working Papers on Innovation Studies 20161026, Centre for Technology, Innovation and Culture, University of Oslo.
    2. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    3. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    4. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    5. Marshall, Jonathan Paul, 2016. "Disordering fantasies of coal and technology: Carbon capture and storage in Australia," Energy Policy, Elsevier, vol. 99(C), pages 288-298.
    6. Normann, Håkon Endresen, 2017. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 80-93.
    7. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    8. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    9. Compernolle, T. & Welkenhuysen, K. & Huisman, K. & Piessens, K. & Kort, P., 2017. "Off-shore enhanced oil recovery in the North Sea: The impact of price uncertainty on the investment decisions," Energy Policy, Elsevier, vol. 101(C), pages 123-137.
    10. Joyeeta Gupta & Arthur Rempel & Hebe Verrest, 0. "Access and allocation: the role of large shareholders and investors in leaving fossil fuels underground," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-20.
    11. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    12. Jonathan Paul Marshall, 2022. "A Social Exploration of the West Australian Gorgon Gas, Carbon Capture and Storage Project," Clean Technol., MDPI, vol. 4(1), pages 1-24, February.
    13. Stephan Spiecker & Volker Eickholt, 2013. "The Impact Of Carbon Capture And Storage On A Decarbonized German Power Market," EWL Working Papers 1304, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2013.
    14. Joyeeta Gupta & Arthur Rempel & Hebe Verrest, 2020. "Access and allocation: the role of large shareholders and investors in leaving fossil fuels underground," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 303-322, June.
    15. Spiecker, S. & Eickholt, V. & Weber, C., 2014. "The impact of carbon capture and storage on a decarbonized German power market," Energy Economics, Elsevier, vol. 43(C), pages 166-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xianjin & Ye, Zhonghua & Xu, Zhengzhong & Husar Holmes, Maja & Henry Lambright, W., 2012. "Carbon capture and sequestration (CCS) technological innovation system in China: Structure, function evaluation and policy implication," Energy Policy, Elsevier, vol. 50(C), pages 635-646.
    2. Ghazinoory, Sepehr & Nasri, Shohreh & Ameri, Fatemeh & Montazer, Gholam Ali & Shayan, Ali, 2020. "Why do we need ‘Problem-oriented Innovation System (PIS)’ for solving macro-level societal problems?," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    3. Jakub Sawulski & Marcin Galczynski & Robert Zajdler, 2018. "A review of the offshore wind innovation system in Poland," IBS Working Papers 06/2018, Instytut Badan Strukturalnych.
    4. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    5. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    6. Hong-Hua Qiu & Jing Yang, 2018. "An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    7. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    8. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    9. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    10. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    11. Leitch, Aletta & Haley, Brendan & Hastings-Simon, Sara, 2019. "Can the oil and gas sector enable geothermal technologies? Socio-technical opportunities and complementarity failures in Alberta, Canada," Energy Policy, Elsevier, vol. 125(C), pages 384-395.
    12. Kooijman, Marlous & Hekkert, Marko P. & van Meer, Peter J.K. & Moors, Ellen H.M. & Schellekens, Huub, 2017. "How institutional logics hamper innovation: The case of animal testing," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 70-79.
    13. van Rijnsoever, Frank J. & van den Berg, Jesse & Koch, Joost & Hekkert, Marko P., 2015. "Smart innovation policy: How network position and project composition affect the diversity of an emerging technology," Research Policy, Elsevier, vol. 44(5), pages 1094-1107.
    14. Bowen, Frances, 2011. "Carbon capture and storage as a corporate technology strategy challenge," Energy Policy, Elsevier, vol. 39(5), pages 2256-2264, May.
    15. Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
    16. Steinkraus, Arne, 2015. "Coal and Gas - From Cradle to Grave with Carbon Capture and Storage," Economics Department Working Paper Series 14, Technische Universität Braunschweig, Economics Department.
    17. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    18. Håkon Endresen Normann, 2016. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Working Papers on Innovation Studies 20161026, Centre for Technology, Innovation and Culture, University of Oslo.
    19. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    20. Huang, Ping & Negro, Simona O. & Hekkert, Marko P. & Bi, Kexin, 2016. "How China became a leader in solar PV: An innovation system analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 777-789.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:55:y:2013:i:c:p:683-689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.