IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp604-616.html
   My bibliography  Save this article

CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis

Author

Listed:
  • Ming, Zeng
  • Shaojie, Ouyang
  • Yingjie, Zhang
  • Hui, Shi

Abstract

Currently, the energy structure with coal is given priority to in China. This situation would not change in a short time which results in massive CO2 emissions and increased pressure to natural environment. Carbon capture and storage technology (known as CCS) is a carbon abatement technology that separates CO2 from industrial production or energy conversion, transports to the storage site after compression, and injects to the deep underground to make long-term isolation from the atmosphere. This technology achieves zero emission during fossil energy extraction and conversion, so the Intergovernmental Panel on Climate Change (IPCC) regarded it as one of the effective methods reducing greenhouse gas emissions in 2005. First, based on the development status of CCS in China, in terms of policies, technology research and CCS projects are described. SWOT is an analysis method that analyses objects all-around from four main aspects of strength, weakness, opportunity and threat. By SWOT, this paper focuses on analyzing the development environment currently in order to find the main stimulatives and obstacles and confirm the feasibility of CCS development in China. Finally, recommendations are proposed addressing the problems and obstacles. The results show that CCS is an effective way to reduce future emissions in China, as with the huge market, and the general support by Chinese government and green groups. However, relevant departments should strengthen economic and policy support at the same time.

Suggested Citation

  • Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:604-616
    DOI: 10.1016/j.rser.2014.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114004894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bowen, Frances, 2011. "Carbon capture and storage as a corporate technology strategy challenge," Energy Policy, Elsevier, vol. 39(5), pages 2256-2264, May.
    2. Rai, Varun & Victor, David G. & Thurber, Mark C., 2010. "Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies," Energy Policy, Elsevier, vol. 38(8), pages 4089-4098, August.
    3. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    4. Hansson, Anders & Bryngelsson, Mårten, 2009. "Expert opinions on carbon dioxide capture and storage--A framing of uncertainties and possibilities," Energy Policy, Elsevier, vol. 37(6), pages 2273-2282, June.
    5. van Bergen, F. & Gale, J. & Damen, K.J. & Wildenborg, A.F.B., 2004. "Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production," Energy, Elsevier, vol. 29(9), pages 1611-1621.
    6. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    7. Vatalis, Konstantinos I. & Laaksonen, Aatto & Charalampides, George & Benetis, Nikolas P., 2012. "Intermediate technologies towards low-carbon economy. The Greek zeolite CCS outlook into the EU commitments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3391-3400.
    8. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    9. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    10. Nykvist, Björn, 2013. "Ten times more difficult: Quantifying the carbon capture and storage challenge," Energy Policy, Elsevier, vol. 55(C), pages 683-689.
    11. Yuan, Jia-Hai & Lyon, Thomas P., 2012. "Promoting global CCS RDD&D by stronger U.S.–China collaboration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6746-6769.
    12. Lo, Kevin, 2014. "A critical review of China's rapidly developing renewable energy and energy efficiency policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 508-516.
    13. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    14. Hamawand, Ihsan & Yusaf, Talal & Hamawand, Sara G., 2013. "Coal seam gas and associated water: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 550-560.
    15. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    16. Stephens, Jennie C. & Jiusto, Scott, 2010. "Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA," Energy Policy, Elsevier, vol. 38(4), pages 2020-2031, April.
    17. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Koronaki, I.P. & Prentza, L. & Papaefthimiou, V., 2015. "Modeling of CO2 capture via chemical absorption processes − An extensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 547-566.
    4. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    5. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    7. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    8. Zeng, Ming & Yang, Yongqi & Fan, Qiannan & Liu, Yingxin & Zou, Zhuojun, 2015. "Coordination between clean energy generation and thermal power generation under the policy of “direct power-purchase for large users” in China," Utilities Policy, Elsevier, vol. 33(C), pages 10-22.
    9. Benítez, Almudena & Amaro-Gahete, Juan & Chien, Yu-Chuan & Caballero, Álvaro & Morales, Julián & Brandell, Daniel, 2022. "Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    2. Hong-Hua Qiu & Jing Yang, 2018. "An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Marshall, Jonathan Paul, 2016. "Disordering fantasies of coal and technology: Carbon capture and storage in Australia," Energy Policy, Elsevier, vol. 99(C), pages 288-298.
    4. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    5. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    6. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    7. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    8. Davies, Lincoln L. & Uchitel, Kirsten & Ruple, John, 2013. "Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment," Energy Policy, Elsevier, vol. 59(C), pages 745-761.
    9. Stewart Russell & Nils Markusson & Vivian Scott, 2012. "What will CCS demonstrations demonstrate?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 651-668, August.
    10. van Os, Herman W.A. & Herber, Rien & Scholtens, Bert, 2014. "Not Under Our Back Yards? A case study of social acceptance of the Northern Netherlands CCS initiative," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 923-942.
    11. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    12. Xi Liang & Hengwei Liu & David Reiner, 2014. "Strategies for Financing Large-scale Carbon Capture and Storage Power Plants in China," Cambridge Working Papers in Economics 1430, Faculty of Economics, University of Cambridge.
    13. Zheng, Yawen & Gao, Lin & Li, Sheng & Wang, Dan, 2022. "A comprehensive evaluation model for full-chain CCUS performance based on the analytic hierarchy process method," Energy, Elsevier, vol. 239(PD).
    14. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.
    15. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    16. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    17. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    18. Gozgor, Giray, 2016. "Are shocks to renewable energy consumption permanent or transitory? An empirical investigation for Brazil, China, and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 913-919.
    19. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    20. Bowen, Frances, 2011. "Carbon capture and storage as a corporate technology strategy challenge," Energy Policy, Elsevier, vol. 39(5), pages 2256-2264, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:604-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.