IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121010522.html
   My bibliography  Save this article

Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host

Author

Listed:
  • Benítez, Almudena
  • Amaro-Gahete, Juan
  • Chien, Yu-Chuan
  • Caballero, Álvaro
  • Morales, Julián
  • Brandell, Daniel

Abstract

While biomass waste is generated in abundance, these materials and their production processes are generally environmentally friendly, low cost, non-hazardous and easily scalable. These advantages position biomass materials as excellent candidates to solve problems of environmental pollution, primarily by substitution of less sustainable counterparts. This also applies to energy storage systems such as batteries, where several components have large environmental impacts. Lithium–Sulfur batteries have, in this context, been extensively researched to cope with the growing energy needs, and are expected to foresee a growing commercialization. Specifically, advances in the use of renewable cathode materials for Li–S batteries is a field that has been widely addressed in recent years, with carbonaceous materials (C) and/or activated carbons (AC), obtained from biomass, being intensively studied. We here reviewed this field through a classification and discussion of carbonaceous materials from natural waste according to the type of biomass: (1) woody, (2) herbaceous and agricultural, (3) aquatic, (4) animal and human, and (5) contaminated and industrial biomass waste materials. In addition, all porous carbons or activated carbons used as sulfur hosts have been exhaustively evaluated in terms of origin, synthesis parameters, physical properties, and electrochemical performance in Li–S batteries. The purpose is to provide a general description of the progress in the preparation of carbons from biomass resources, examine the textural and electrochemical properties of these materials focusing on the last decade, and also to present an outlook for future research in this developing area.

Suggested Citation

  • Benítez, Almudena & Amaro-Gahete, Juan & Chien, Yu-Chuan & Caballero, Álvaro & Morales, Julián & Brandell, Daniel, 2022. "Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010522
    DOI: 10.1016/j.rser.2021.111783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    2. Fan, Lanlan & Li, Zhenhuan & Kang, Weimin & Cheng, Bowen, 2020. "Biomass-derived tube-like nitrogen and oxygen dual-doped porous carbon in the sulfur cathode for lithium sulfur battery," Renewable Energy, Elsevier, vol. 155(C), pages 309-316.
    3. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    4. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    5. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    6. Chunyong Liang & Xiaomin Zhang & Yan Zhao & Taizhe Tan & Yongguang Zhang & Zhihong Chen, 2018. "Preparation of Hierarchical Porous Carbon from Waterweed and Its Application in Lithium/Sulfur Batteries," Energies, MDPI, vol. 11(6), pages 1-11, June.
    7. Yahya, Mohd Adib & Al-Qodah, Z. & Ngah, C.W. Zanariah, 2015. "Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 218-235.
    8. Ioannidou, O. & Zabaniotou, A., 2007. "Agricultural residues as precursors for activated carbon production--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1966-2005, December.
    9. Abbas Fotouhi & Daniel J. Auger & Laura O’Neill & Tom Cleaver & Sylwia Walus, 2017. "Lithium-Sulfur Battery Technology Readiness and Applications—A Review," Energies, MDPI, vol. 10(12), pages 1-15, November.
    10. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    11. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    12. Hongfang Chen & Yin Wang & Guangwen Xu & Kunio Yoshikawa, 2012. "Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content," Energies, MDPI, vol. 5(12), pages 1-21, December.
    13. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    14. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    15. He, Lixia & English, Burton C. & De La Torre Ugarte, Daniel G. & Hodges, Donald G., 2014. "Woody biomass potential for energy feedstock in United States," Journal of Forest Economics, Elsevier, vol. 20(2), pages 174-191.
    16. Danish, Mohammed & Ahmad, Tanweer, 2018. "A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Deng, Liangwei, 2022. "Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    2. Sekhon, Satpal Singh & Kaur, Prabhsharan & Park, Jin-Soo, 2021. "From coconut shell biomass to oxygen reduction reaction catalyst: Tuning porosity and nitrogen doping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    4. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    6. Adrianna Kamińska & Joanna Sreńscek-Nazzal & Karolina Kiełbasa & Jadwiga Grzeszczak & Jarosław Serafin & Agnieszka Wróblewska, 2023. "Carbon-Supported Nickel Catalysts—Comparison in Alpha-Pinene Oxidation Activity," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    7. Stefan Frank & Hannes Böttcher & Mykola Gusti & Petr Havlík & Ger Klaassen & Georg Kindermann & Michael Obersteiner, 2016. "Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030," Climatic Change, Springer, vol. 138(1), pages 253-266, September.
    8. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    9. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.
    10. Randall W. Jackson & Amir Borges Ferreira Neto & Elham Erfanian & Péter Járosi, 2019. "Woody Biomass Processing and Rural Regional Development," Economic Development Quarterly, , vol. 33(3), pages 234-247, August.
    11. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Vikas Menghwani & Chad Walker & Tim Kalke & Bram Noble & Greg Poelzer, 2022. "Harvesting Local Energy: A Case Study of Community-Led Bioenergy Development in Galena, Alaska," Energies, MDPI, vol. 15(13), pages 1-17, June.
    13. M. Synek & J. Vašíček & M. Zeman, 2014. "Outlook of logging perspectives in the Czech Republic for the period 2013-2032," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 60(9), pages 372-381.
    14. Lauri, Pekka & Forsell, Nicklas & Korosuo, Anu & Havlík, Petr & Obersteiner, Michael & Nordin, Annika, 2017. "Impact of the 2°C target on global woody biomass use," Forest Policy and Economics, Elsevier, vol. 83(C), pages 121-130.
    15. Tiziana Maria Sirangelo & Richard Andrew Ludlow & Tatiana Chenet & Luisa Pasti & Natasha Damiana Spadafora, 2023. "Multi-Omics and Genome Editing Studies on Plant Cell Walls to Improve Biomass Quality," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    16. Zanchini, Raffaele & Blanc, Simone & Pippinato, Liam & Poratelli, Francesca & Bruzzese, Stefano & Brun, Filippo, 2022. "Enhancing wood products through ENplus, FSC and PEFC certifications: Which attributes do consumers value the most?," Forest Policy and Economics, Elsevier, vol. 142(C).
    17. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    18. C. Tattersall Smith & Brenna Lattimore & Göran Berndes & Niclas Scott Bentsen & Ioannis Dimitriou & J.W.A. (Hans) Langeveld & Evelyne Thiffault, 2017. "Opportunities to encourage mobilization of sustainable bioenergy supply chains," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    19. Randall Jackson & Amir B. Ferreira Neto & Elham Erfanian, 2016. "Woody Biomass Processing: Potential Economic Impacts on Rural Regions," Working Papers Working Paper 2016-04-v3, Regional Research Institute, West Virginia University.
    20. Wu, Wenchao & Hasegawa, Tomoko & Fujimori, Shinichiro & Takahashi, Kiyoshi & Oshiro, Ken, 2020. "Assessment of bioenergy potential and associated costs in Japan for the 21st century," Renewable Energy, Elsevier, vol. 162(C), pages 308-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.