IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010266.html
   My bibliography  Save this article

Exploring the diffusion mechanisms of CCS-EOR technology: A quadripartite evolutionary game

Author

Listed:
  • Zhang, Weiwei
  • Wang, Yuanrong
  • Chen, Ximei
  • Li, Yunzhuo
  • Dai, He

Abstract

As an indispensable constituent of China’ s carbon neutrality technology framework, Carbon Capture and Storage with Enhanced Oil Recovery (CCS-EOR) is crucial for achieving dual-carbon targets. However, the lack of proactive and societal collaboration has hindered the large-deployment of this technology. To address this issue, this paper employs evolutionary game theory to construct a quadripartite game model involving coal-fired power plants (CFPPs), oil companies, the public, and the government to delve into the strategic behavior evolution. The results from numerical simulations on key parameters indicate that (1) Government rewards and penalties, combined with active public participation, drive the system towards stable equilibrium. (2) Government initial subsidies for CFPPs substantially accelerate their investments, while a threshold effect exists for carbon taxes in prompting CFPPs to transit from non-investment to investment, with investment occurring only when the threshold is exceeded. Conversely, oil companies are less sensitive to government intervention as the less impact on oil companies' profit. (3) Increasing public rewards to 1.67 times the baseline level accelerates the time for CFPPs’ investment by four years, further advancing oil companies and government toward stable equilibrium. The findings of this study provide valuable insights for the low-carbon transformation of high-emission enterprises and for the development of low-carbon technologies in society.

Suggested Citation

  • Zhang, Weiwei & Wang, Yuanrong & Chen, Ximei & Li, Yunzhuo & Dai, He, 2025. "Exploring the diffusion mechanisms of CCS-EOR technology: A quadripartite evolutionary game," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010266
    DOI: 10.1016/j.energy.2025.135384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Jing-Li & Li, Zezheng & Ding, Zixia & Li, Kai & Zhang, Xian, 2023. "Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models," Energy Economics, Elsevier, vol. 126(C).
    2. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    3. Jiang, Hong-Dian & Liang, Qiao-Mei & Yao, Yun-Fei & Liu, Lan-Cui, 2024. "Incentive policies to realize large-scale deployment of CCS in China's power sector and its economy-wide impacts," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 1-14.
    4. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    5. Zhang, Yan & Wang, Si-Xia & Yao, Jian-Ting & Tong, Rui-Peng, 2023. "The impact of behavior safety management system on coal mine work safety: A system dynamics model of quadripartite evolutionary game," Resources Policy, Elsevier, vol. 82(C).
    6. Zhang, Jing & Liu, Yu & Yang, Lingyu & Zhang, Jinzhu & Li, Xinbei, 2025. "An assessment of the effectiveness of CCS technology incentive policies based on dynamic CGE model," Energy Policy, Elsevier, vol. 198(C).
    7. Zhou, Wenwen & shi, Yu & Zhao, Tian & Cao, Ximeng & Li, Jialin, 2024. "Government regulation, horizontal coopetition, and low-carbon technology innovation: A tripartite evolutionary game analysis of government and homogeneous energy enterprises," Energy Policy, Elsevier, vol. 184(C).
    8. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    9. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    10. Song, Xiaohua & Ge, Zeqi & Zhang, Wen & Wang, Zidong & Huang, Yamin & Liu, Hong, 2023. "Study on multi-subject behavior game of CCUS cooperative alliance," Energy, Elsevier, vol. 262(PB).
    11. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    12. Sun, Lili & Liu, Qiang & Chen, Hongju & Yu, Hang & Li, Ling & Li, Lintao & Li, Yanzun & Adenutsi, Caspar Daniel, 2024. "Source-sink matching and cost analysis of offshore carbon capture, utilization, and storage in China," Energy, Elsevier, vol. 291(C).
    13. Yang, Lin & Xu, Mao & Yang, Yuantao & Fan, Jingli & Zhang, Xian, 2019. "Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China," Applied Energy, Elsevier, vol. 255(C).
    14. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    15. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    16. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    17. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Liang, Xi & Sun, Yan & Angus, Daniel, 2020. "China's carbon capture, utilization and storage (CCUS) policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Ye, Xiaoqi & Yu, Ziwang & Xu, Tianfu & Zhang, Yanjun & Guo, Liangliang, 2024. "Numerical study on the geomechanical responses in the Jilin Oilfield CO2-EOR and CGS projects in China," Energy, Elsevier, vol. 310(C).
    19. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    20. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    21. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    22. Sun, Bo & Fan, Boyang & Wu, Chun & Xie, Jingdong, 2024. "Exploring incentive mechanisms for the CCUS project in China's coal-fired power plants: An option-game approach," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jing & Liu, Yu & Yang, Lingyu & Zhang, Jinzhu & Li, Xinbei, 2025. "An assessment of the effectiveness of CCS technology incentive policies based on dynamic CGE model," Energy Policy, Elsevier, vol. 198(C).
    2. Zhou, Jianli & Chen, Zhuohao & Wu, Shuxian & Yang, Cheng & Wang, Yaqi & Wu, Yunna, 2024. "Potential assessment and development obstacle analysis of CCUS layout in China: A combined interpretive model based on GIS-DEMATEL-ISM," Energy, Elsevier, vol. 310(C).
    3. Wang, Yadong & Mao, Jinqi & Chen, Fan & Wang, Delu, 2022. "Uncovering the dynamics and uncertainties of substituting coal power with renewable energy resources," Renewable Energy, Elsevier, vol. 193(C), pages 669-686.
    4. Sun, Bo & Fan, Boyang & Wu, Chun & Xie, Jingdong, 2024. "Exploring incentive mechanisms for the CCUS project in China's coal-fired power plants: An option-game approach," Energy, Elsevier, vol. 288(C).
    5. Yang, Lin & Hou, Huiyun & Lv, Haodong & Wu, Guanqi & Xu, Bang & Li, Yiming, 2025. "Exploring the development path of bioenergy carbon capture and storage for achieving carbon neutrality in China: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    6. Bo Sun & Jiajia Tao, 2024. "Investment Decisions of CCUS Projects in China Considering the Supply–Demand Relationship of CO 2 from the Industry Symbiosis Perspective," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    7. Lu Feng & Qiuyu Ren & Giuseppe Ioppolo & Wenjie Liao, 2024. "Integrating China's carbon capture, utilization, and storage policy for sustainable development: Insights from content analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 5104-5119, October.
    8. Tan, Zhizhou & Huang, Hui & Lin, Boqiang, 2024. "Impact assessment of the residual lifespan of coal-fired power plants on the investment risk of carbon capture and storage retrofit," Energy, Elsevier, vol. 307(C).
    9. Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
    10. Hua Pan & Yan Wang & Yunfeng Chen & Jiakang Sun & Jicheng Liu, 2025. "Network Evolutionary Game Analysis of Coal-to-Hydrogen CCUS Technology Dissemination in Carbon Trading Market," Sustainability, MDPI, vol. 17(2), pages 1-21, January.
    11. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).
    12. Fikru, Mahelet G. & Belaïd, Fateh & Ma, Hongyan, 2024. "Carbon capture and renewable energy policies: Could policy harmonization be a puzzle piece to solve the electricity crisis?," Energy Economics, Elsevier, vol. 136(C).
    13. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    14. Fikru, Mahelet G., 2025. "Policy preference for a net zero carbon economy: Results from a US national survey," Energy Policy, Elsevier, vol. 198(C).
    15. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    16. Tryfonas Pieri & Alexandros Nikitas & Athanasios Angelis-Dimakis, 2023. "Public Acceptance and Willingness to Pay for Carbon Capture and Utilisation Products," Clean Technol., MDPI, vol. 5(1), pages 1-15, March.
    17. Hao, Xinyu & Sun, Wen & Zhang, Xiaoling, 2023. "How does a scarcer allowance remake the carbon market? An evolutionary game analysis from the perspective of stakeholders," Energy, Elsevier, vol. 280(C).
    18. Yu, Biying & Fu, Jiahao & Dai, Ying, 2025. "Multi-agent simulation of policies driving CCS technology in the cement industry," Energy Policy, Elsevier, vol. 199(C).
    19. Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
    20. Li, Zezheng & Zhu, Nenggao & Wen, Xin & Liu, Yu, 2025. "Assessment the impact of power generation hours on the abatement costs of CCUS on coal-fired power plants in China," Energy Economics, Elsevier, vol. 144(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.