IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v63y1995i6p1371-99.html
   My bibliography  Save this article

Evolutionary Selection in Normal-Form Games

Author

Listed:
  • Ritzberger, Klaus
  • Weibull, Jorgen W

Abstract

This paper investigates stability properties of evolutionary selection dynamics in normal-form games. The analysis is focused on deterministic dynamics in continuous time and on asymptotic stability of sets of population states, more precisely of faces of the mixed-strategy space. The main result is a characterization of those faces that are asymptotically stable in all dynamics from a certain class, and the authors show that every such face contains an essential component of the set of Nash equilibria and, hence, a strategically stable set in the sense of E. Kohlberg and J. F. Mertens (1986). Copyright 1995 by The Econometric Society.

Suggested Citation

  • Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
  • Handle: RePEc:ecm:emetrp:v:63:y:1995:i:6:p:1371-99
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0012-9682%28199511%2963%3A6%3C1371%3AESING%3E2.0.CO%3B2-X&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    2. Samuelson, Larry & Zhang, Jianbo, 1992. "Evolutionary stability in asymmetric games," Journal of Economic Theory, Elsevier, vol. 57(2), pages 363-391, August.
    3. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 59-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhijit Banerjee & Jörgen W. Weibull & Ken Binmore, 1996. "Evolution and Rationality: Some Recent Game-Theoretic Results," International Economic Association Series, in: Beth Allen (ed.), Economics in a Changing World, chapter 4, pages 90-117, Palgrave Macmillan.
    2. Hofbauer, Josef & Weibull, Jorgen W., 1996. "Evolutionary Selection against Dominated Strategies," Journal of Economic Theory, Elsevier, vol. 71(2), pages 558-573, November.
    3. Bernergård, Axel & Mohlin, Erik, 2019. "Evolutionary selection against iteratively weakly dominated strategies," Games and Economic Behavior, Elsevier, vol. 117(C), pages 82-97.
    4. Weibull, Jörgen W., 1992. "An Introduction to Evolutionary Game Theory," Working Paper Series 347, Research Institute of Industrial Economics.
    5. Weibull, Jörgen W., 1997. "What have we learned from Evolutionary Game Theory so far?," Working Paper Series 487, Research Institute of Industrial Economics, revised 26 Oct 1998.
    6. Ponti, Giovanni, 2000. "Cycles of Learning in the Centipede Game," Games and Economic Behavior, Elsevier, vol. 30(1), pages 115-141, January.
    7. Waters, George A., 2009. "Chaos in the cobweb model with a new learning dynamic," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1201-1216, June.
    8. Hopkins, Ed, 1999. "Learning, Matching, and Aggregation," Games and Economic Behavior, Elsevier, vol. 26(1), pages 79-110, January.
    9. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    10. Viossat, Yannick, 2008. "Evolutionary dynamics may eliminate all strategies used in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 27-43, July.
    11. Weibull, Jörgen & Salomonsson, Marcus, 2005. "Natural selection and social preferences," SSE/EFI Working Paper Series in Economics and Finance 588, Stockholm School of Economics, revised 27 Sep 2005.
    12. Antonio Cabrales & Giovanni Ponti, 2000. "Implementation, Elimination of Weakly Dominated Strategies and Evolutionary Dynamics," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 3(2), pages 247-282, April.
    13. Cabrales, Antonio, 1999. "Adaptive Dynamics and the Implementation Problem with Complete Information," Journal of Economic Theory, Elsevier, vol. 86(2), pages 159-184, June.
    14. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    15. Lahkar, Ratul, 2019. "Elimination of non-individualistic preferences in large population aggregative games," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 150-165.
    16. George Loginov, 2022. "Ordinal imitative dynamics," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 391-412, June.
    17. Gerard van der Laan & A.F. Tieman, 1996. "Evolutionary Game Theory and the Modelling of Economic Behavior," Tinbergen Institute Discussion Papers 96-172/8, Tinbergen Institute.
    18. Weibull, Jorgen W., 1998. "Evolution, rationality and equilibrium in games," European Economic Review, Elsevier, vol. 42(3-5), pages 641-649, May.
    19. Banerjee, Abhijit & Weibull, Jörgen W., 1993. "Evolutionary Selection with Discriminating Players," Working Paper Series 375, Research Institute of Industrial Economics.
    20. Sethi, Rajiv, 1998. "Strategy-Specific Barriers to Learning and Nonmonotonic Selection Dynamics," Games and Economic Behavior, Elsevier, vol. 23(2), pages 284-304, May.

    More about this item

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:63:y:1995:i:6:p:1371-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.