IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1611-1621.html
   My bibliography  Save this article

Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production

Author

Listed:
  • van Bergen, F.
  • Gale, J.
  • Damen, K.J.
  • Wildenborg, A.F.B.

Abstract

A study has been undertaken to assess the potential for low cost opportunities for CO2 capture and storage/sequestration worldwide. Such opportunities should provide options for early implementation of projects worldwide. They combine high purity (100%) CO2 gas streams with short transmission distance and potentially profitable CO2 enhanced fossil fuel recovery schemes such as CO2-EOR and CO2-ECBM, which simultaneously sequester CO2. The study has used a geographical information system to link high purity CO2 point sources to oil and gas reservoirs within 100 km of the point source. In doing this some 420 possible CO2-EOR opportunities and a further 79 possible CO2-ECBM opportunities were identified.

Suggested Citation

  • van Bergen, F. & Gale, J. & Damen, K.J. & Wildenborg, A.F.B., 2004. "Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production," Energy, Elsevier, vol. 29(9), pages 1611-1621.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1611-1621
    DOI: 10.1016/j.energy.2004.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiongwen Chen, 2014. "A Case Study of Monitoring Emission from CO2 Enhanced Oil Recovery by Remote Sensing Data," Energy and Environment Research, Canadian Center of Science and Education, vol. 4(3), pages 1-33, December.
    2. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    3. Gang Wang & Ke Wang & Yujing Jiang & Shugang Wang, 2018. "Reservoir Permeability Evolution during the Process of CO 2 -Enhanced Coalbed Methane Recovery," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Tang, Jinyu & Vincent-Bonnieu, Sebastien & Rossen, William R., 2019. "CT coreflood study of foam flow for enhanced oil recovery: The effect of oil type and saturation," Energy, Elsevier, vol. 188(C).
    5. Zhang, Fengming & Xu, Chunyan & Zhang, Yong & Chen, Shouyan & Chen, Guifang & Ma, Chunyuan, 2014. "Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties," Energy, Elsevier, vol. 66(C), pages 577-587.
    6. Buttinelli, M. & Procesi, M. & Cantucci, B. & Quattrocchi, F. & Boschi, E., 2011. "The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy," Energy, Elsevier, vol. 36(5), pages 2968-2983.
    7. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    8. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    9. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    10. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    11. Jun Pu & Xuejie Qin & Feifei Gou & Wenchao Fang & Fengjie Peng & Runxi Wang & Zhaoli Guo, 2018. "Molecular Modeling of CO 2 and n -Octane in Solubility Process and α -Quartz Nanoslit," Energies, MDPI, vol. 11(11), pages 1-11, November.
    12. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    13. Chaturvedi, Krishna Raghav & Trivedi, Japan & Sharma, Tushar, 2020. "Single-step silica nanofluid for improved carbon dioxide flow and reduced formation damage in porous media for carbon utilization," Energy, Elsevier, vol. 197(C).
    14. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    15. Ganesh, Ibram, 2014. "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 221-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1611-1621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.