IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03609403.html
   My bibliography  Save this paper

Unlocking CO2 Infrastructure Deployment The Impact of Carbon Removal Accounting

Author

Listed:
  • Emma Jagu

    (IFPEN - IFP Energies nouvelles, IFP School, LGI - Laboratoire Génie Industriel - CentraleSupélec - Université Paris-Saclay)

  • Olivier Massol

    (IFPEN - IFP Energies nouvelles, IFP School, LGI - Laboratoire Génie Industriel - CentraleSupélec - Université Paris-Saclay, CEC - Chaire Economie du Climat - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres, City University London)

Abstract

Carbon removal certification may become a powerful instrument to accelerate decarbonization efforts. In Europe, its implementation is expected to foster the deployment of Bioenergy with Carbon Capture and Storage (BECCS). Yet, the large-scale adoption of BECCS is also limited by the availability of a costly CO2 transportation infrastructure shared with fossil-fueled emitters. In this paper, we examine the interactions between carbon removal accounting (which determines financial incentives for BECCS) and optimal CO2 infrastructure deployment by asking how certification affects the feasibility of BECCS projects. We propose an original economic framework to explore this question and apply it to a real case study in Sweden. We show that, although a carbon removal accounting framework based on a lifecycle methodology discourages investment in inefficient BECCS processes, it may lead to locking out BECCS from CO2 infrastructures. Our results suggest that a trade-off must be found between accurately evaluating carbon removal and avoiding BECCS lock-out. We formulate two policy recommendations to overcome this trade-off: (i) deploying sustainable biomass certification to incentivize more carbonefficient BECCS process, and (ii) stimulating public and private demand for carbon removal credits to induce a higher price for sustainable carbon removal than for carbon mitigation.

Suggested Citation

  • Emma Jagu & Olivier Massol, 2022. "Unlocking CO2 Infrastructure Deployment The Impact of Carbon Removal Accounting," Working Papers hal-03609403, HAL.
  • Handle: RePEc:hal:wpaper:hal-03609403
    Note: View the original document on HAL open archive server: https://ifp.hal.science/hal-03609403v1
    as

    Download full text from publisher

    File URL: https://ifp.hal.science/hal-03609403v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hal:journl:hal-04292863 is not listed on IDEAS
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    3. Krahé, Max & Heidug, Wolf & Ward, John & Smale, Robin, 2013. "From demonstration to deployment: An economic analysis of support policies for carbon capture and storage," Energy Policy, Elsevier, vol. 60(C), pages 753-763.
    4. James M. Griffin, 1979. "Statistical Cost Analysis Revisited," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 93(1), pages 107-129.
    5. Pao-Yu Oei & Roman Mendelevitch, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," The Energy Journal, , vol. 37(3_suppl), pages 171-194, December.
    6. Barbara Koelbl & Machteld Broek & André Faaij & Detlef Vuuren, 2014. "Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise," Climatic Change, Springer, vol. 123(3), pages 461-476, April.
    7. Mack, Joel & Endemann, Buck, 2010. "Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines," Energy Policy, Elsevier, vol. 38(2), pages 735-743, February.
    8. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    9. Baltazar Solano Rodriguez & Paul Drummond & Paul Ekins, 2017. "Decarbonizing the EU energy system by 2050: an important role for BECCS," Climate Policy, Taylor & Francis Journals, vol. 17(0), pages 93-110, June.
    10. Banal-Estanol, A. & Eckhause, J. & Massol, O., 2015. "Incentives for early adoption of carbon capture technology: further considerations from a European perspective," Working Papers 15/03, Department of Economics, City St George's, University of London.
    11. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO₂ Infrastructure Investment until 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 171-194.
    12. Perrotton, Florian & Massol, Olivier, 2020. "Rate-of-return regulation to unlock natural gas pipeline deployment: Insights from a Mozambican project," Energy Economics, Elsevier, vol. 85(C).
    13. Griffin, James M, 1978. "Joint Production Technology: The Case of Petrochemicals," Econometrica, Econometric Society, vol. 46(2), pages 379-396, March.
    14. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    15. Salony Rajbhandari & Bundit Limmeechokchai, 2021. "Assessment of greenhouse gas mitigation pathways for Thailand towards achievement of the 2°C and 1.5°C Paris Agreement targets," Climate Policy, Taylor & Francis Journals, vol. 21(4), pages 492-513, April.
    16. Katja Kuparinen & Esa Vakkilainen & Tero Tynjälä, 2019. "Biomass-based carbon capture and utilization in kraft pulp mills," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1213-1230, October.
    17. Klokk, Ø. & Schreiner, P.F. & Pagès-Bernaus, A. & Tomasgard, A., 2010. "Optimizing a CO2 value chain for the Norwegian Continental Shelf," Energy Policy, Elsevier, vol. 38(11), pages 6604-6614, November.
    18. Bistline, John E. & Hodson, Elke & Rossmann, Charles G. & Creason, Jared & Murray, Brian & Barron, Alexander R., 2018. "Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project," Energy Economics, Elsevier, vol. 73(C), pages 307-325.
    19. Bosetti, Valentina & Marangoni, Giacomo & Borgonovo, Emanuele & Diaz Anadon, Laura & Barron, Robert & McJeon, Haewon C. & Politis, Savvas & Friley, Paul, 2015. "Sensitivity to energy technology costs: A multi-model comparison analysis," Energy Policy, Elsevier, vol. 80(C), pages 244-263.
    20. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 171-194.
    21. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).
    22. Clair Gough & Paul Upham, 2011. "Biomass energy with carbon capture and storage (BECCS or Bio‐CCS)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(4), pages 324-334, December.
    23. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    24. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    25. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.
    26. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    27. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    28. Ricci, Olivia & Selosse, Sandrine, 2013. "Global and regional potential for bioelectricity with carbon capture and storage," Energy Policy, Elsevier, vol. 52(C), pages 689-698.
    29. Comello, Stephen & Reichelstein, Stefan, 2014. "Incentives for early adoption of carbon capture technology," Energy Policy, Elsevier, vol. 74(C), pages 579-588.
    30. Asbjørn Torvanger, 2019. "Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 329-341, March.
    31. Spiecker, S. & Eickholt, V. & Weber, C., 2014. "The impact of carbon capture and storage on a decarbonized German power market," Energy Economics, Elsevier, vol. 43(C), pages 166-177.
    32. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    33. Di Sbroiavacca, Nicolás & Nadal, Gustavo & Lallana, Francisco & Falzon, James & Calvin, Katherine, 2016. "Emissions reduction scenarios in the Argentinean Energy Sector," Energy Economics, Elsevier, vol. 56(C), pages 552-563.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bardon, Paul & Massol, Olivier, 2025. "Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    3. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).
    4. Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104, pages 1-18.
    5. Adrien Nicolle & Diego Cedreros & Olivier Massol & Emma Jagu Schippers, 2023. "Modeling CO2 Pipeline Systems : An Analytical Lens for CCS Regulation," Working Papers hal-04087681, HAL.
    6. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    7. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    8. Richter, Philipp M. & Schiersch, Alexander, 2017. "CO2 emission intensity and exporting: Evidence from firm-level data," European Economic Review, Elsevier, vol. 98(C), pages 373-391.
    9. Michele Fioretti & Alessandro Iaria & Aljoscha Janssen & Robert K Perrons & Clément Mazet-Sonilhac, 2022. "Innovation Begets Innovation and Concentration: the Case of Upstream Oil & Gas in the North Sea," Working Papers hal-03791971, HAL.
    10. Xie, Weipeng & Aryanpur, Vahid & Deane, Paul & Daly, Hannah E., 2025. "Negative emissions technologies in energy system models and mitigation scenarios - a systematic review," Applied Energy, Elsevier, vol. 380(C).
    11. Cai, W. & Singham, D.I. & Craparo, E.M. & White, J.A., 2014. "Pricing Contracts Under Uncertainty in a Carbon Capture and Storage Framework," Energy Economics, Elsevier, vol. 43(C), pages 56-62.
    12. Olivier Massol & Stéphane Tchung-Ming, 2012. "Joining the CCS Club ! Insights from a Northwest European CO2 pipeline project," Working Papers hal-03206457, HAL.
    13. Ansari, Dawud & Holz, Franziska, 2019. "Anticipating global energy, climate and policy in 2055: Constructing qualitative and quantitative narratives," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 58, pages 1-23.
    14. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    15. Michele Fioretti & Alessandro Iaria & Aljoscha Janssen & Cl'ement Mazet-Sonilhac & Robert K. Perrons, 2022. "Transferable Know-How: Evidence from the Upstream Oil & Gas Industry," Papers 2205.13186, arXiv.org, revised Mar 2025.
    16. Janssen, Aljoscha, 2022. "Innovation Begets Innovation and Concentration: The Case of Upstream Oil & Gas in the North Sea," Working Paper Series 1431, Research Institute of Industrial Economics.
    17. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.
    18. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    19. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," World Development, Elsevier, vol. 130(C).
    20. Laurie Waller & Tim Rayner & Jason Chilvers & Clair Amanda Gough & Irene Lorenzoni & Andrew Jordan & Naomi Vaughan, 2020. "Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03609403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.