IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i7d10.1007_s11027-018-9833-9.html
   My bibliography  Save this article

Biomass-based carbon capture and utilization in kraft pulp mills

Author

Listed:
  • Katja Kuparinen

    (Lappeenranta University of Technology)

  • Esa Vakkilainen

    (Lappeenranta University of Technology)

  • Tero Tynjälä

    (Lappeenranta University of Technology)

Abstract

Corporate image, European Emission Trading System and Environmental Regulations, encourage pulp industry to reduce carbon dioxide (CO2) emissions. Kraft pulp mills produce CO2 mainly in combustion processes. The largest sources are the recovery boiler, the biomass boiler, and the lime kiln. Due to utilizing mostly biomass-based fuels, the CO2 is largely biogenic. Capture and storage of CO2 (CCS) could offer pulp and paper industry the possibility to act as site for negative CO2 emissions. In addition, captured biogenic CO2 can be used as a raw material for bioproducts. Possibilities for CO2 utilization include tall oil manufacturing, lignin extraction, and production of precipitated calcium carbonate (PCC), depending on local conditions and mill-specific details. In this study, total biomass-based CO2 capture and storage potential (BECCS) and potential to implement capture and utilization of biomass-based CO2 (BECCU) in kraft pulp mills were estimated by analyzing the impacts of the processes on the operation of two modern reference mills, a Nordic softwood kraft pulp mill with integrated paper production and a Southern eucalyptus kraft pulp mill. CO2 capture is energy-intensive, and thus the effects on the energy balances of the mills were estimated. When papermaking is integrated in the mill operations, energy adequacy can be a limiting factor for carbon capture implementation. Global carbon capture potential was estimated based on pulp production data. Kraft pulp mills have notable CO2 capture potential, while the on-site utilization potential using currently available technologies is lower. The future of these processes depends on technology development, desire to reuse CO2, and prospective changes in legislation.

Suggested Citation

  • Katja Kuparinen & Esa Vakkilainen & Tero Tynjälä, 2019. "Biomass-based carbon capture and utilization in kraft pulp mills," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1213-1230, October.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9833-9
    DOI: 10.1007/s11027-018-9833-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9833-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9833-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karjunen, Hannu & Tynjälä, Tero & Hyppänen, Timo, 2017. "A method for assessing infrastructure for CO2 utilization: A case study of Finland," Applied Energy, Elsevier, vol. 205(C), pages 33-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    2. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    3. Anna Denysenko & Romaniia Cheropkina, 2023. "Characteristics of black liquor after alkaline delignification of paulownia wood," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 6(3(74)), pages 12-17, December.
    4. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    5. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    6. Jussi Saari & Ekaterina Sermyagina & Katja Kuparinen & Satu Lipiäinen & Juha Kaikko & Marcelo Hamaguchi & Clara Mendoza-Martinez, 2022. "Improving Kraft Pulp Mill Energy Efficiency through Low-Temperature Hydrothermal Carbonization of Biological Sludge," Energies, MDPI, vol. 15(17), pages 1-16, August.
    7. Katja Kuparinen & Satu Lipiäinen & Esa Vakkilainen & Timo Laukkanen, 2023. "Effect of biomass-based carbon capture on the sustainability and economics of pulp and paper production in the Nordic mills," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 648-668, January.
    8. Lim, Jonghun & Kim, Junghwan, 2022. "Optimizing ash deposit removal system to maximize biomass recycling as renewable energy for CO2 reduction," Renewable Energy, Elsevier, vol. 190(C), pages 1006-1017.
    9. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
    10. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
    12. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    13. Satu Lipiäinen & Esa Vakkilainen, 2021. "Role of the Finnish forest industry in mitigating global change: energy use and greenhouse gas emissions towards 2035," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    2. Reveron Baecker, Beneharo & Candas, Soner, 2022. "Co-optimizing transmission and active distribution grids to assess demand-side flexibilities of a carbon-neutral German energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    4. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    5. Szabolcs Szima & Calin-Cristian Cormos, 2021. "CO 2 Utilization Technologies: A Techno-Economic Analysis for Synthetic Natural Gas Production," Energies, MDPI, vol. 14(5), pages 1-18, February.
    6. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    7. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    8. Katja Kuparinen & Satu Lipiäinen & Esa Vakkilainen & Timo Laukkanen, 2023. "Effect of biomass-based carbon capture on the sustainability and economics of pulp and paper production in the Nordic mills," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 648-668, January.
    9. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    10. Edwards, Jonathan P. & Xu, Yi & Gabardo, Christine M. & Dinh, Cao-Thang & Li, Jun & Qi, ZhenBang & Ozden, Adnan & Sargent, Edward H. & Sinton, David, 2020. "Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer," Applied Energy, Elsevier, vol. 261(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    13. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9833-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.