IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920313556.html
   My bibliography  Save this article

BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects

Author

Listed:
  • Bello, Sara
  • Galán-Martín, Ángel
  • Feijoo, Gumersindo
  • Moreira, Maria Teresa
  • Guillén-Gosálbez, Gonzalo

Abstract

Bioenergy with carbon capture and storage (BECCS) is gaining broad interest as an effective strategy to go beyond carbon neutrality. So far, most of the work on BECCS focused on power systems, while its application to the transport sector has received much less attention. To contribute to filling this gap, this work investigates the potential of BECCS as a carbon-negative strategy in the transport sector by applying process modelling and life cycle assessment (LCA) to bioethanol production from lignocellulosic waste. The process was analyzed following a cradle-to-wheel approach, i.e., from biomass growth to the combustion of biofuel in the cars, assuming that the CO2 emitted in the fermentation and cogeneration units is captured, compressed and transported to be stored permanently in geological sites. Several scenarios differing in the bioethanol-gasoline blends (10–85% bioethanol) were considered for a functional unit of 1 km of distance travelled, comparing with fossil-based gasoline. Our results show that blends above 85% (ethanol/gasoline) could have the potential to deliver a net-negative emissions balance of −2.74 kg CO2 eq per 100 km travelled and up to −5.05 kg CO2 eq per 100 km using a low carbon electricity source. The final amount of net CO2 removal is highly dependent on the carbon intensity of the electricity and the heating utilities. Biofuels blends could, however, lead to burden-shifting in eutrophication, ozone depletion and formation, toxicity, land use, and water consumption. This work highlights the potential of BECCS in the transport sector, and the need to analyze impacts beyond climate change in future studies to avoid shifting burdens to other categories.

Suggested Citation

  • Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313556
    DOI: 10.1016/j.apenergy.2020.115884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    2. Milão, Raquel de Freitas Dias & Carminati, Hudson B. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Salvo, A & Geiger, F, 2014. "Reduction in Local Ozone Levels in Urban São Paulo Due to a Shift from Ethanol to Gasoline Use," MPRA Paper 57868, University Library of Munich, Germany, revised 18 Feb 2014.
    4. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    5. Bhave, Amit & Taylor, Richard H.S. & Fennell, Paul & Livingston, William R. & Shah, Nilay & Dowell, Niall Mac & Dennis, John & Kraft, Markus & Pourkashanian, Mohammed & Insa, Mathieu & Jones, Jenny & , 2017. "Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets," Applied Energy, Elsevier, vol. 190(C), pages 481-489.
    6. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    8. Algunaibet, Ibrahim M. & Pozo, Carlos & Galán-Martín, Ángel & Guillén-Gosálbez, Gonzalo, 2019. "Quantifying the cost of leaving the Paris Agreement via the integration of life cycle assessment, energy systems modeling and monetization," Applied Energy, Elsevier, vol. 242(C), pages 588-601.
    9. Choi, Jaeuk & Cho, Habin & Yun, Seokwon & Jang, Mun-Gi & Oh, Se-Young & Binns, Michael & Kim, Jin-Kuk, 2019. "Process design and optimization of MEA-based CO2 capture processes for non-power industries," Energy, Elsevier, vol. 185(C), pages 971-980.
    10. Carminati, Hudson Bolsoni & Milão, Raquel de Freitas D. & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2019. "Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility," Applied Energy, Elsevier, vol. 254(C).
    11. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    12. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    13. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    15. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2019. "An inter-model assessment of the role of direct air capture in deep mitigation pathways," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    16. D. Bonijoly & A. Fabbri & F. Chapuis & Audrey Laude & O. Ricci & Hugues Bauer & S. Grataloup & X. Galiègue, 2009. "Technical and economic feasibility of the capture and geological storage of CO2 from a bio-fuel distillery: CPER Artenay project," Post-Print hal-02163814, HAL.
    17. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    18. Johannes Bednar & Michael Obersteiner & Fabian Wagner, 2019. "On the financial viability of negative emissions," Nature Communications, Nature, vol. 10(1), pages 1-4, December.
    19. Gabrielli, Paolo & Charbonnier, Flora & Guidolin, Annalisa & Mazzotti, Marco, 2020. "Enabling low-carbon hydrogen supply chains through use of biomass and carbon capture and storage: A Swiss case study," Applied Energy, Elsevier, vol. 275(C).
    20. Moreira, José Roberto & Romeiro, Viviane & Fuss, Sabine & Kraxner, Florian & Pacca, Sérgio A., 2016. "BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues," Applied Energy, Elsevier, vol. 179(C), pages 55-63.
    21. Sanchez, Daniel L. & Callaway, Duncan S., 2016. "Optimal scale of carbon-negative energy facilities," Applied Energy, Elsevier, vol. 170(C), pages 437-444.
    22. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    23. Vera Heck & Dieter Gerten & Wolfgang Lucht & Alexander Popp, 2018. "Biomass-based negative emissions difficult to reconcile with planetary boundaries," Nature Climate Change, Nature, vol. 8(2), pages 151-155, February.
    24. Katja Kuparinen & Esa Vakkilainen & Tero Tynjälä, 2019. "Biomass-based carbon capture and utilization in kraft pulp mills," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1213-1230, October.
    25. Möllersten, K. & Yan, J. & Westermark, M., 2003. "Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills," Energy, Elsevier, vol. 28(7), pages 691-710.
    26. Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
    27. Laschi, Andrea & Marchi, Enrico & González-García, Sara, 2016. "Environmental performance of wood pellets' production through life cycle analysis," Energy, Elsevier, vol. 103(C), pages 469-480.
    28. A. Fabbri & D. Bonijoly & O. Bouc & G. Bureau & C. Castagnac & F. Chapuis & X. Galiègue & Audrey Laude & Y. Le Gallo & S. Grataloup & O. Ricci & J. Royer-Adnot & C. Zammit, 2011. "From geology to economics: Technico-economic feasibility of a biofuel-CCS system," Post-Print hal-02163800, HAL.
    29. Carlos Pozo & Ángel Galán-Martín & David M. Reiner & Niall Dowell & Gonzalo Guillén-Gosálbez, 2020. "Equity in allocating carbon dioxide removal quotas," Nature Climate Change, Nature, vol. 10(7), pages 640-646, July.
    30. Christopher S. Galik, 2020. "A continuing need to revisit BECCS and its potential," Nature Climate Change, Nature, vol. 10(1), pages 2-3, January.
    31. P. A. Turner & K. J. Mach & D. B. Lobell & S. M. Benson & E. Baik & D. L. Sanchez & C. B. Field, 2018. "The global overlap of bioenergy and carbon sequestration potential," Climatic Change, Springer, vol. 148(1), pages 1-10, May.
    32. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    33. Pereira, L.G. & Cavalett, O. & Bonomi, A. & Zhang, Y. & Warner, E. & Chum, H.L., 2019. "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.
    3. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    5. Giusilene Costa de Souza Pinho & João Luiz Calmon, 2023. "LCA of Wood Waste Management Systems: Guiding Proposal for the Standardization of Studies Based on a Critical Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    6. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    7. Guofeng Wang & Rui Shi & Wei Cheng & Lihua Gao & Xiankai Huang, 2023. "Bibliometric Analysis for Carbon Neutrality with Hotspots, Frontiers, and Emerging Trends between 1991 and 2022," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    8. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    9. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    10. Singh, Udayan & Colosi, Lisa M., 2021. "The case for estimating carbon return on investment (CROI) for CCUS platforms," Applied Energy, Elsevier, vol. 285(C).
    11. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    12. Geissler, Caleb H. & Maravelias, Christos T., 2021. "Economic, energetic, and environmental analysis of lignocellulosic biorefineries with carbon capture," Applied Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    2. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Carminati, Hudson Bolsoni & Milão, Raquel de Freitas D. & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2019. "Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility," Applied Energy, Elsevier, vol. 254(C).
    5. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
    6. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    8. Vassilis Stavrakas & Niki-Artemis Spyridaki & Alexandros Flamos, 2018. "Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs," Sustainability, MDPI, vol. 10(7), pages 1-27, June.
    9. Brenda H. M. Silveira & Hirdan K. M. Costa & Edmilson M. Santos, 2023. "Bioenergy with Carbon Capture and Storage (BECCS) in Brazil: A Review," Energies, MDPI, vol. 16(4), pages 1-18, February.
    10. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    11. Julio, Alisson Aparecido Vitoriano & Castro-Amoedo, Rafael & Maréchal, François & González, Aldemar Martínez & Escobar Palacio, José Carlos, 2023. "Exergy and economic analysis of the trade-off for design of post-combustion CO2 capture plant by chemical absorption with MEA," Energy, Elsevier, vol. 280(C).
    12. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    13. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Xu Deng & Fei Teng & Minpeng Chen & Zhangliu Du & Bin Wang & Renqiang Li & Pan Wang, 2024. "Exploring negative emission potential of biochar to achieve carbon neutrality goal in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Duncan McLaren, 2020. "Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques," Climatic Change, Springer, vol. 162(4), pages 2411-2428, October.
    17. Sammarchi, Sergio & Li, Jia & Izikowitz, David & Yang, Qiang & Xu, Dong, 2022. "China’s coal power decarbonization via CO2 capture and storage and biomass co-firing: A LCA case study in Inner Mongolia," Energy, Elsevier, vol. 261(PA).
    18. Anders Hansson & Mathias Fridahl & Simon Haikola & Pius Yanda & Noah Pauline & Edmund Mabhuye, 2020. "Preconditions for bioenergy with carbon capture and storage (BECCS) in sub-Saharan Africa: the case of Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6851-6875, October.
    19. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.