IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50594-5.html
   My bibliography  Save this article

Deployment expectations of multi-gigatonne scale carbon removal could have adverse impacts on Asia’s energy-water-land nexus

Author

Listed:
  • Jeffrey Dankwa Ampah

    (Tianjin University
    Tianjin University)

  • Chao Jin

    (Tianjin University)

  • Haifeng Liu

    (Tianjin University)

  • Mingfa Yao

    (Tianjin University)

  • Sandylove Afrane

    (Tianjin University)

  • Humphrey Adun

    (Near East University)

  • Jay Fuhrman

    (University of Maryland and Pacific Northwest National Laboratory)

  • David T. Ho

    (University of Hawaii at Mānoa
    Boulder)

  • Haewon McJeon

    (KAIST Graduate School of Green Growth & Sustainability)

Abstract

Existing studies indicate that future global carbon dioxide (CO2) removal (CDR) efforts could largely be concentrated in Asia. However, there is limited understanding of how individual Asian countries and regions will respond to varying and uncertain scales of future CDR concerning their energy-land-water system. We address this gap by modeling various levels of CDR-reliant pathways under climate change ambitions in Asia. We find that high CDR reliance leads to residual fossil fuel and industry emissions of about 8 Gigatonnes CO2yr−1 (GtCO2yr−1) by 2050, compared to less than 1 GtCO2yr−1 under moderate-to-low CDR reliance. Moreover, expectations of multi-gigatonne CDR could delay the achievement of domestic net zero CO2 emissions for several Asian countries and regions, and lead to higher land allocation and fertilizer demand for bioenergy crop cultivation. Here, we show that Asian countries and regions should prioritize emission reduction strategies while capitalizing on the advantages of carbon removal when it is most viable.

Suggested Citation

  • Jeffrey Dankwa Ampah & Chao Jin & Haifeng Liu & Mingfa Yao & Sandylove Afrane & Humphrey Adun & Jay Fuhrman & David T. Ho & Haewon McJeon, 2024. "Deployment expectations of multi-gigatonne scale carbon removal could have adverse impacts on Asia’s energy-water-land nexus," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50594-5
    DOI: 10.1038/s41467-024-50594-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50594-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50594-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joeri Rogelj & Daniel Huppmann & Volker Krey & Keywan Riahi & Leon Clarke & Matthew Gidden & Zebedee Nicholls & Malte Meinshausen, 2019. "A new scenario logic for the Paris Agreement long-term temperature goal," Nature, Nature, vol. 573(7774), pages 357-363, September.
    2. John E. T. Bistline & Geoffrey J. Blanford, 2021. "Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    4. Carlos Pozo & Ángel Galán-Martín & David M. Reiner & Niall Dowell & Gonzalo Guillén-Gosálbez, 2020. "Equity in allocating carbon dioxide removal quotas," Nature Climate Change, Nature, vol. 10(7), pages 640-646, July.
    5. Robin D. Lamboll & Zebedee R. J. Nicholls & Christopher J. Smith & Jarmo S. Kikstra & Edward Byers & Joeri Rogelj, 2023. "Assessing the size and uncertainty of remaining carbon budgets," Nature Climate Change, Nature, vol. 13(12), pages 1360-1367, December.
    6. Andrews, Talbot M. & Delton, Andrew W. & Kline, Reuben, 2022. "Anticipating moral hazard undermines climate mitigation in an experimental geoengineering game," Ecological Economics, Elsevier, vol. 196(C).
    7. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    8. Christine Merk & Gert Pönitzsch & Katrin Rehdanz, 2019. "Do climate engineering experts display moral-hazard behaviour?," Climate Policy, Taylor & Francis Journals, vol. 19(2), pages 231-243, February.
    9. Jay Fuhrman & Haewon McJeon & Pralit Patel & Scott C. Doney & William M. Shobe & Andres F. Clarens, 2020. "Food–energy–water implications of negative emissions technologies in a +1.5 °C future," Nature Climate Change, Nature, vol. 10(10), pages 920-927, October.
    10. Jay Fuhrman & Candelaria Bergero & Maridee Weber & Seth Monteith & Frances M. Wang & Andres F. Clarens & Scott C. Doney & William Shobe & Haewon McJeon, 2023. "Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system," Nature Climate Change, Nature, vol. 13(4), pages 341-350, April.
    11. Gokul Iyer & Yang Ou & James Edmonds & Allen A. Fawcett & Nathan Hultman & James McFarland & Jay Fuhrman & Stephanie Waldhoff & Haewon McJeon, 2022. "Ratcheting of climate pledges needed to limit peak global warming," Nature Climate Change, Nature, vol. 12(12), pages 1129-1135, December.
    12. Claire L. Fyson & Susanne Baur & Matthew Gidden & Carl-Friedrich Schleussner, 2020. "Fair-share carbon dioxide removal increases major emitter responsibility," Nature Climate Change, Nature, vol. 10(9), pages 836-841, September.
    13. Rickels, Wilfried & Merk, Christine & Reith, Fabian & Keller, David P. & Oschlies, Andreas, 2019. "(Mis)conceptions about modeling of negative emissions technologies," Open Access Publications from Kiel Institute for the World Economy 225999, Kiel Institute for the World Economy (IfW Kiel).
    14. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2019. "An inter-model assessment of the role of direct air capture in deep mitigation pathways," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
    3. Thomas Hahn & Johannes Morfeldt & Robert Höglund & Mikael Karlsson & Ingo Fetzer, 2024. "Estimating countries’ additional carbon accountability for closing the mitigation gap based on past and future emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
    5. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    6. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    9. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    10. Lisandra Flach & Johannes Pfeiffer & Karen Pittel, 2022. "Fairness und Eigeninteresse im internationalen Klimaschutz [Fairness and Self-Interest in International Climate Protection]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(1), pages 12-20, May.
    11. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Asbjørn Torvanger, 2023. "What If Country Commitments for CO 2 Removal Were Based on Responsibility for Historical Emissions?," Energies, MDPI, vol. 16(11), pages 1-11, May.
    13. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Salekpay, Foroogh, 2021. "Distributing the European Union Greenhouse Gas emission 2030," Working Papers 2072/534909, Universitat Rovira i Virgili, Department of Economics.
    15. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    16. Foroogh Salekpay, 2023. "The Allocation of Greenhouse Gas Emission in European Union through Applying the Claims Problems Approach," Games, MDPI, vol. 14(1), pages 1-11, January.
    17. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    18. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
    20. Bryan K. Mignone & Leon Clarke & James A. Edmonds & Angelo Gurgel & Howard J. Herzog & Jeremiah X. Johnson & Dharik S. Mallapragada & Haewon McJeon & Jennifer Morris & Patrick R. O’Rourke & Sergey Pal, 2024. "Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50594-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.