IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23554-6.html
   My bibliography  Save this article

Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector

Author

Listed:
  • John E. T. Bistline

    (Electric Power Research Institute)

  • Geoffrey J. Blanford

    (Electric Power Research Institute)

Abstract

Carbon dioxide removal technologies, such as bioenergy with carbon capture and direct air capture, are valuable for stringent climate targets. Previous work has examined implications of carbon removal, primarily bioenergy-based technologies using integrated assessment models, but not investigated the effects of a portfolio of removal options on power systems in detail. Here, we explore impacts of carbon removal technologies on electric sector investments, costs, and emissions using a detailed capacity planning and dispatch model with hourly resolution. We show that adding carbon removal to a mix of low-carbon generation technologies lowers the costs of deep decarbonization. Changes to system costs and investments from including carbon removal are larger as policy ambition increases, reducing the dependence on technologies like advanced nuclear and long-duration storage. Bioenergy with carbon capture is selected for net-zero electric sector emissions targets, but direct air capture deployment increases as biomass supply costs rise.

Suggested Citation

  • John E. T. Bistline & Geoffrey J. Blanford, 2021. "Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23554-6
    DOI: 10.1038/s41467-021-23554-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23554-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23554-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, An T. & Craig, Michael T., 2023. "Cost and deployment consequences of advanced planning for negative emissions with direct air capture in the U.S. Eastern Interconnection," Applied Energy, Elsevier, vol. 350(C).
    2. Aditya Sinha & Aranya Venkatesh & Katherine Jordan & Cameron Wade & Hadi Eshraghi & Anderson R. Queiroz & Paulina Jaramillo & Jeremiah X. Johnson, 2024. "Diverse decarbonization pathways under near cost-optimal futures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Salas, D.A. & Boero, A.J. & Ramirez, A.D., 2024. "Life cycle assessment of bioenergy with carbon capture and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Cole, Wesley & Antonysamy, Adithya & Brown, Patrick & Sergi, Brian & Mai, Trieu & Denholm, Paul, 2023. "How much might it cost to decarbonize the power sector? It depends on the metric," Energy, Elsevier, vol. 276(C).
    5. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    6. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    8. Hanwoong Kim & Haewon McJeon & Dawoon Jung & Hanju Lee & Candelaria Bergero & Jiyong Eom, 2021. "Integrated Assessment Modeling of Korea 2050 Carbon Neutrality Technology Pathways," Papers 2111.01598, arXiv.org.
    9. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    11. Qiu, Yang & Cohen, Stuart & Suh, Sangwon, 2022. "Decarbonization scenarios of the U.S. Electricity system and their costs," Applied Energy, Elsevier, vol. 325(C).
    12. Jeffrey Dankwa Ampah & Chao Jin & Haifeng Liu & Mingfa Yao & Sandylove Afrane & Humphrey Adun & Jay Fuhrman & David T. Ho & Haewon McJeon, 2024. "Deployment expectations of multi-gigatonne scale carbon removal could have adverse impacts on Asia’s energy-water-land nexus," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Wu, F. & Wang, S.Y. & Zhou, P., 2023. "Marginal abatement cost of carbon dioxide emissions: The role of abatement options," European Journal of Operational Research, Elsevier, vol. 310(2), pages 891-901.
    16. Martin Staadecker & Julia Szinai & Pedro A. Sánchez-Pérez & Sarah Kurtz & Patricia Hidalgo-Gonzalez, 2024. "The value of long-duration energy storage under various grid conditions in a zero-emissions future," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23554-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.