IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012739.html
   My bibliography  Save this article

Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system

Author

Listed:
  • Millinger, M.
  • Reichenberg, L.
  • Hedenus, F.
  • Berndes, G.
  • Zeyen, E.
  • Brown, T.

Abstract

Abatement options for the hard-to-electrify parts of the transport sector are needed to achieve ambitious emissions targets. Biofuels based on biomass, electrofuels based on renewable hydrogen and a carbon source, as well as fossil fuels compensated by carbon dioxide removal (CDR) are the main options. Currently, biofuels are the only renewable fuels available at scale and are stimulated by blending mandates. Here, we estimate the system cost of enforcing such mandates in addition to an overall emissions cap for all energy sectors. We model overnight scenarios for 2040 and 2060 with the sector-coupled European energy system model PyPSA-Eur-Sec, with a high temporal resolution. The following cost drivers are identified: (i) high biomass costs due to scarcity, (ii) opportunity costs for competing usages of biomass for industry heat and combined heat and power (CHP) with carbon capture, and (iii) lower scalability and generally higher cost for biofuels compared to electrofuels and fossil fuels combined with CDR. With a -80% emissions reduction target in 2040, variable renewables, partial electrification of heat, industry and transport, and biomass use for CHP and industrial heat are important for achieving the target at minimal cost, while an abatement of remaining liquid fossil fuel use increases system cost. In this case, a 50% biofuel mandate increases total energy system costs by 123–191 billion €, corresponding to 35%–62% of the liquid fuel cost without a mandate. With a negative -105% emissions target in 2060, fuel abatement options are necessary, and electrofuels or the use of CDR to offset fossil fuel emissions are both more competitive than biofuels. In this case, a 50% biofuel mandate increases total costs by 21–33 billion €, or 11%–15% of the liquid fuel cost without a mandate. Biomass is preferred in CHP and industry heat, combined with carbon capture to serve negative emissions or electrofuel production, thereby utilising biogenic carbon several times. Sensitivity analyses reveal significant uncertainties but consistently support that higher biofuel mandates lead to higher costs.

Suggested Citation

  • Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012739
    DOI: 10.1016/j.apenergy.2022.120016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathleen Meisel & Markus Millinger & Karin Naumann & Franziska Müller-Langer & Stefan Majer & Daniela Thrän, 2020. "Future Renewable Fuel Mixes in Transport in Germany under RED II and Climate Protection Targets," Energies, MDPI, vol. 13(7), pages 1-18, April.
    2. Katja Oehmichen & Stefan Majer & Daniela Thrän, 2021. "Biomethane from Manure, Agricultural Residues and Biowaste—GHG Mitigation Potential from Residue-Based Biomethane in the European Transport Sector," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    3. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    4. John E. T. Bistline & Geoffrey J. Blanford, 2021. "Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    6. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    7. Jessica Strefler & Elmar Kriegler & Nico Bauer & Gunnar Luderer & Robert C. Pietzcker & Anastasis Giannousakis & Ottmar Edenhofer, 2021. "Alternative carbon price trajectories can avoid excessive carbon removal," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    9. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    10. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
    11. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    12. Yi Yang & David Tilman & Clarence Lehman & Jared J. Trost, 2018. "Sustainable intensification of high-diversity biomass production for optimal biofuel benefits," Nature Sustainability, Nature, vol. 1(11), pages 686-692, November.
    13. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    14. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    15. Millinger, M. & Ponitka, J. & Arendt, O. & Thrän, D., 2017. "Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany," Energy Policy, Elsevier, vol. 107(C), pages 394-402.
    16. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    17. Reichenberg, Lina & Siddiqui, Afzal S. & Wogrin, Sonja, 2018. "Policy implications of downscaling the time dimension in power system planning models to represent variability in renewable output," Energy, Elsevier, vol. 159(C), pages 870-877.
    18. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    19. Hoel, Michael, 1996. "Should a carbon tax be differentiated across sectors?," Journal of Public Economics, Elsevier, vol. 59(1), pages 17-32, January.
    20. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    21. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    22. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    23. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    24. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
    25. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    26. Matthias Jordan & Volker Lenz & Markus Millinger & Katja Oehmichen & Daniela Thran, 2019. "Future competitive bioenergy technologies in the German heat sector: Findings from an economic optimization approach," Papers 1908.10065, arXiv.org, revised Aug 2019.
    27. Jordan, Matthias & Millinger, Markus & Thrän, Daniela, 2020. "Robust bioenergy technologies for the German heat transition: A novel approach combining optimization modeling with Sobol’ sensitivity analysis," Applied Energy, Elsevier, vol. 262(C).
    28. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
    29. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    30. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    31. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Leblanc &, 2020. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Climatic Change, Springer, vol. 163(3), pages 1553-1568, December.
    32. Jordan, Matthias & Lenz, Volker & Millinger, Markus & Oehmichen, Katja & Thrän, Daniela, 2019. "Future competitive bioenergy technologies in the German heat sector: Findings from an economic optimization approach," Energy, Elsevier, vol. 189(C).
    33. Mandley, S.J. & Daioglou, V. & Junginger, H.M. & van Vuuren, D.P. & Wicke, B., 2020. "EU bioenergy development to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    34. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    35. Leonidas Mantzos & Tobias Wiesenthal & Nicoleta Anca Matei & Stephane Tchung-Ming & Mate Rozsai & Peter Russ & Antonio Soria Ramirez, 2017. "JRC-IDEES: Integrated Database of the European Energy Sector: Methodological note," JRC Research Reports JRC108244, Joint Research Centre.
    36. Eilidh J. Forster & John R. Healey & Caren Dymond & David Styles, 2021. "Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    37. Berndes, Goran & Hansson, Julia, 2007. "Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels," Energy Policy, Elsevier, vol. 35(12), pages 5965-5979, December.
    38. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    2. Svetlana Proskurina & Clara Mendoza-Martinez, 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU," Energies, MDPI, vol. 16(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    3. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    4. Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Fabio Antoniou & Roland Strausz, 2014. "The Effectiveness of Taxation and Feed-in Tariffs," CESifo Working Paper Series 4788, CESifo.
    6. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    7. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    8. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    9. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    11. Dominik Keiner & Larissa D.S.N.S. Barbosa & Dmitrii Bogdanov & Arman Aghahosseini & Ashish Gulagi & Solomon Oyewo & Michael Child & Siavash Khalili & Christian Breyer, 2021. "Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050," Energies, MDPI, vol. 14(13), pages 1-51, June.
    12. Naoya Nagano & Rémi Delage & Toshihiko Nakata, 2021. "Optimal Design and Analysis of Sector-Coupled Energy System in Northeast Japan," Energies, MDPI, vol. 14(10), pages 1-26, May.
    13. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).
    14. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    15. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing emissions," EconStor Preprints 253267, ZBW - Leibniz Information Centre for Economics.
    17. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing power sector emissions," EconStor Preprints 258999, ZBW - Leibniz Information Centre for Economics.
    18. Jenkins, Jesse D., 2014. "Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?," Energy Policy, Elsevier, vol. 69(C), pages 467-477.
    19. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    20. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.