IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003879.html
   My bibliography  Save this article

A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics

Author

Listed:
  • Clauser, Nicolas
  • Scown, Corinne D.
  • Pett-Ridge, Jennifer
  • Sagues, William Joe

Abstract

Biomass carbon removal and storage (BiCRS) is a promising pathway to mitigate climate change via large scale removal of atmospheric carbon dioxide (CO2). We modeled several fermentation technologies, producing a variety of bioproducts from lignocellulosic feedstocks, to understand their levelized cost of CO2 removal under multiple scenarios. Lifecycle greenhouse gas (GHG) emissions are accounted to provide cradle-to-grave estimates of carbon intensity (CI). We did not account for the avoided fossil CO2 emissions from the use of biofuels in our CO2 removal cost calculations, because avoided emissions do not contribute to CO2 removal. The main products from the fermentation technologies we modeled include renewable diesel, ethanol, sustainable aviation fuel (SAF), and polyethylene (PE), with co-products including CO2, adipic acid, steam, and electricity. PE, depending on its end-of-life management, can serve as a form of biogenic carbon storage. PE has the potential to remove 1.2–1.5 tCO2 per dry t-biomass, whereas biofuels have the potential to remove 0.3–0.9 tCO2 per dry t-biomass, indicating that PE production is a more efficient method of carbon removal. We quantify costs of CO2 removal to be $60 – $675 per metric tCO2 removed across the various fermentation pathways. Under the scenarios analyzed, bioplastic production from lignocellulosic biomass is a more cost-effective route to CO2 removal than biofuel production, with costs of CO2 removal via bioplastics being 50–90 % lower than that of biofuels. Future research should explore the potential benefits and drawbacks of expanding bioplastic production for large-scale CO2 removal.

Suggested Citation

  • Clauser, Nicolas & Scown, Corinne D. & Pett-Ridge, Jennifer & Sagues, William Joe, 2025. "A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003879
    DOI: 10.1016/j.rser.2025.115714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Jarre, Matteo & Petit-Boix, Anna & Priefer, Carmen & Meyer, Rolf & Leipold, Sina, 2020. "Transforming the bio-based sector towards a circular economy - What can we learn from wood cascading?," Forest Policy and Economics, Elsevier, vol. 110(C).
    3. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Garlapati, Vijay Kumar & Chandel, Anuj K. & Kumar, S.P. Jeevan & Sharma, Swati & Sevda, Surajbhan & Ingle, Avinash P. & Pant, Deepak, 2020. "Circular economy aspects of lignin: Towards a lignocellulose biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Dominic Woolf & James E. Amonette & F. Alayne Street-Perrott & Johannes Lehmann & Stephen Joseph, 2010. "Sustainable biochar to mitigate global climate change," Nature Communications, Nature, vol. 1(1), pages 1-9, December.
    6. Sanchez, Daniel L. & Callaway, Duncan S., 2016. "Optimal scale of carbon-negative energy facilities," Applied Energy, Elsevier, vol. 170(C), pages 437-444.
    7. Eric G. O’Neill & Caleb H. Geissler & Christos T. Maravelias, 2024. "Large-scale spatially explicit analysis of carbon capture at cellulosic biorefineries," Nature Energy, Nature, vol. 9(7), pages 828-838, July.
    8. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Kumar, Santosh & Singh, Neetu & Prasad, Ram, 2010. "Anhydrous ethanol: A renewable source of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1830-1844, September.
    10. Nicolás M. Clauser & Giselle González & Carolina M. Mendieta & Julia Kruyeniski & María C. Area & María E. Vallejos, 2021. "Biomass Waste as Sustainable Raw Material for Energy and Fuels," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    11. Tan, Raymond R., 2019. "Data challenges in optimizing biochar-based carbon sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 174-177.
    12. Irena Wojnowska-Baryła & Katarzyna Bernat & Magdalena Zaborowska, 2022. "Plastic Waste Degradation in Landfill Conditions: The Problem with Microplastics, and Their Direct and Indirect Environmental Effects," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
    13. Christin Liptow & Anne‐Marie Tillman, 2012. "A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 420-435, June.
    14. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    15. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability, Springer, vol. 2(1), pages 281-312, March.
    3. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Xu Deng & Fei Teng & Minpeng Chen & Zhangliu Du & Bin Wang & Renqiang Li & Pan Wang, 2024. "Exploring negative emission potential of biochar to achieve carbon neutrality goal in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
    7. Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
    8. Ana Arias & Sara González‐García & Gumersindo Feijoo & Maria Teresa Moreira, 2022. "Tannin‐based bio‐adhesives for the wood panel industry as sustainable alternatives to petrochemical resins," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 627-642, April.
    9. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    10. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    12. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    13. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    14. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    15. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    17. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    18. Ong, Mei Yin & Milano, Jassinnee & Nomanbhay, Saifuddin & Palanisamy, Kumaran & Tan, Yeong Hwang & Ong, Hwai Chyuan, 2025. "Insights into algae-plastic pyrolysis: Thermogravimetric and kinetic approaches for renewable energy," Energy, Elsevier, vol. 314(C).
    19. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    20. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.